一种基于迁移学习的半监督异常检测方法

    公开(公告)号:CN113128613B

    公开(公告)日:2023-10-17

    申请号:CN202110471648.7

    申请日:2021-04-29

    Applicant: 南京大学

    Abstract: 一种基于迁移学习的半监督异常检测方法,构建一个卷积神经网络进行异常检测,卷积神经网络包括网络#imgabs0#和网络#imgabs1#两个网络模块,以及用于特征融合的全连接层,分别用异常检测数据集和一个不相关的有标签参考数据集预训练网络#imgabs2#和网络#imgabs3#再对预训练得到的网络#imgabs4#和网络#imgabs5#进行联合训练,由训练得到的卷积神经网络进行异常检测。本发明通过迁移学习的方法,以一个参考数据集进行辅助,实现半监督异常检测,网络模型能充分利用数据中的标注信息,增加了对正常样本和异常样本的区分能力,同时增强了模型对有污染数据的鲁棒性。使用本发明方法训练的模型,AUC指标从72.2%提升到了75.9%,有效提升了检测的准确性。

    一种基于迁移学习的半监督异常检测方法

    公开(公告)号:CN113128613A

    公开(公告)日:2021-07-16

    申请号:CN202110471648.7

    申请日:2021-04-29

    Applicant: 南京大学

    Abstract: 一种基于迁移学习的半监督异常检测方法,构建一个卷积神经网络进行异常检测,卷积神经网络包括网络和网络两个网络模块,以及用于特征融合的全连接层,分别用异常检测数据集和一个不相关的有标签参考数据集预训练网络和网络再对预训练得到的网络和网络进行联合训练,由训练得到的卷积神经网络进行异常检测。本发明通过迁移学习的方法,以一个参考数据集进行辅助,实现半监督异常检测,网络模型能充分利用数据中的标注信息,增加了对正常样本和异常样本的区分能力,同时增强了模型对有污染数据的鲁棒性。使用本发明方法训练的模型,AUC指标从72.2%提升到了75.9%,有效提升了检测的准确性。

    一种基于信念图增强网络的人体姿态估计方法

    公开(公告)号:CN113128446A

    公开(公告)日:2021-07-16

    申请号:CN202110471854.8

    申请日:2021-04-29

    Applicant: 南京大学

    Abstract: 一种基于信念图增强网络的人体姿态估计方法,构建一个信念图增强网络,对人体姿态估计基础模型输出的信念图提高分辨率;在训练信念图增强网络时,根据训练集中的标注信息生成低分辨率信念图标签和高分辨率信念图标签,低分辨率信念图标签对应基础模型的输出分辨率,高分辨率信念图标签对应信念图增强网络的输出分辨率,训练时利用MESLoss函数分别计算两种分辨率下预测结果与真实标签之间的均方误差,求二者的加权和,并以此推导信念图增强网络各层参数的梯度,使用Adam优化器进行监督训练。本发明能够改善现有人体姿态估计方法中最终输出的信念图分辨率较低的现状,达到提高预测精确度的目的,而且不会带来参数量和浮点运算量上的显著提升。

Patent Agency Ranking