一种基于迁移学习的半监督异常检测方法

    公开(公告)号:CN113128613B

    公开(公告)日:2023-10-17

    申请号:CN202110471648.7

    申请日:2021-04-29

    Applicant: 南京大学

    Abstract: 一种基于迁移学习的半监督异常检测方法,构建一个卷积神经网络进行异常检测,卷积神经网络包括网络#imgabs0#和网络#imgabs1#两个网络模块,以及用于特征融合的全连接层,分别用异常检测数据集和一个不相关的有标签参考数据集预训练网络#imgabs2#和网络#imgabs3#再对预训练得到的网络#imgabs4#和网络#imgabs5#进行联合训练,由训练得到的卷积神经网络进行异常检测。本发明通过迁移学习的方法,以一个参考数据集进行辅助,实现半监督异常检测,网络模型能充分利用数据中的标注信息,增加了对正常样本和异常样本的区分能力,同时增强了模型对有污染数据的鲁棒性。使用本发明方法训练的模型,AUC指标从72.2%提升到了75.9%,有效提升了检测的准确性。

    一种基于迁移学习的半监督异常检测方法

    公开(公告)号:CN113128613A

    公开(公告)日:2021-07-16

    申请号:CN202110471648.7

    申请日:2021-04-29

    Applicant: 南京大学

    Abstract: 一种基于迁移学习的半监督异常检测方法,构建一个卷积神经网络进行异常检测,卷积神经网络包括网络和网络两个网络模块,以及用于特征融合的全连接层,分别用异常检测数据集和一个不相关的有标签参考数据集预训练网络和网络再对预训练得到的网络和网络进行联合训练,由训练得到的卷积神经网络进行异常检测。本发明通过迁移学习的方法,以一个参考数据集进行辅助,实现半监督异常检测,网络模型能充分利用数据中的标注信息,增加了对正常样本和异常样本的区分能力,同时增强了模型对有污染数据的鲁棒性。使用本发明方法训练的模型,AUC指标从72.2%提升到了75.9%,有效提升了检测的准确性。

Patent Agency Ranking