一种基于图神经网络的自适应众包任务推荐方法

    公开(公告)号:CN114418253A

    公开(公告)日:2022-04-29

    申请号:CN202110664342.3

    申请日:2021-06-16

    申请人: 南京大学

    IPC分类号: G06Q10/06 G06N3/04

    摘要: 本发明公开了一种基于图神经网络的自适应众包任务推荐方法,获取真实应用场景中的众包任务对象集合和推荐人群集合,根据众包任务对象和推荐人群依据经典KNN方法构建出众包网络图结构和推荐人群网络图结构;利用图神经网络方法GCN分别在众包网络图结构、推荐人群网络图结构上进行多轮信息传播,对众包任务以及推荐人进行任务嵌入表示和推荐人嵌入表示学习;递归的进行嵌入表示学习操作,多轮学习后,将得到的众包嵌入表示和推荐人嵌入表示采用t‑SNE映射到同一空间当中,根据邻近原则,将对应的任务推荐到具体到个人。本发明不仅可精准推荐众包任务到个人,而且比传统的众包任务推荐方法更加高效且准确,且更加科学合理。

    一种基于异构图注意力网络的众包任务推荐方法

    公开(公告)号:CN113361928B

    公开(公告)日:2023-08-25

    申请号:CN202110631471.2

    申请日:2021-06-07

    申请人: 南京大学

    摘要: 本发明公开了一种基于异构图注意力网络的众包任务推荐方法,首先采集众包数据,依次进行特征清洗、特征筛选、特征补全处理后获得众包参与人员与任务的属性特征向量,并构建异构众包网络,按照设定元路径进行采样和预训练,获取人员与任务的节点特征表示并进行模型训练,获取节点对之间的注意力;依据注意力系数进行邻居节点信息的传递和聚合,更新人员与任务的节点特征表示;最后根据学习到的节点特征表示,计算人员与任务的相似性得分,按照得分排序进行任务推荐;本发明针对众包中已有的任务信息与人员信息,建立众包异构网络,使用图注意力网络进行众包网络中特征向量的更新,提升众包任务推荐准确度,进一步提升完成效率和完成质量。

    一种基于异构图注意力网络的众包任务推荐方法

    公开(公告)号:CN113361928A

    公开(公告)日:2021-09-07

    申请号:CN202110631471.2

    申请日:2021-06-07

    申请人: 南京大学

    摘要: 本发明公开了一种基于异构图注意力网络的众包任务推荐方法,首先采集众包数据,依次进行特征清洗、特征筛选、特征补全处理后获得众包参与人员与任务的属性特征向量,并构建异构众包网络,按照设定元路径进行采样和预训练,获取人员与任务的节点特征表示并进行模型训练,获取节点对之间的注意力;依据注意力系数进行邻居节点信息的传递和聚合,更新人员与任务的节点特征表示;最后根据学习到的节点特征表示,计算人员与任务的相似性得分,按照得分排序进行任务推荐;本发明针对众包中已有的任务信息与人员信息,建立众包异构网络,使用图注意力网络进行众包网络中特征向量的更新,提升众包任务推荐准确度,进一步提升完成效率和完成质量。