-
公开(公告)号:CN116189759A
公开(公告)日:2023-05-30
申请号:CN202310234744.9
申请日:2023-03-13
Applicant: 南京农业大学
Abstract: 本发明公开了一种群体感应先导化合物的虚拟筛选方法,主要流程包括:输入的分子化合物结构通过预处理构建分子邻接矩阵,送入GNN1网络生成化合物特征;输入的蛋白质序列,提取其蛋白质氨基酸组成、二肽频率组合成蛋白质初步特征向量,送入交叉网络,生成交叉融合特征;同时,将蛋白质序列生成对应的接触图,随后送入GNN2网络生成蛋白序列特征;最终将三个特征组合送入全连接层预测得到亲和力值。本发明可用于发现新的具有群体感应活性的化合物,为青枯菌等细菌的控制和防治提供新的思路和手段;同时该方法可以高效地筛选出与PhcA和PhcR蛋白结合的化合物,从而发现具有群体感应活性的化合物。
-
公开(公告)号:CN116364192A
公开(公告)日:2023-06-30
申请号:CN202310216689.0
申请日:2023-03-08
Applicant: 南京农业大学
IPC: G16B40/30 , G06F18/23 , G06N3/08 , G06N3/0464
Abstract: 本发明公开了一种使用自监督特征学习的三代宏基因组分箱方法,其包括步骤为:步骤一、在已测序基因组数据基础上生成模拟长reads;步骤二、将长reads送入自监督特征表示模型训练,并保存最佳模型参数;步骤三、模型训练后,将三代reads送入模型提取特征,宏基因组long reads序列通过特征表示模型转换成特征向量后,将输入到聚类层通过聚类层进行分箱。本发明避免了以往大多数方法只看重核苷酸频率和覆盖度等统计特征而忽视long reads本身序列特征的缺点,其使用的具有半监督性质的对比学习能够有效利用已有的数据库信息,避免了以往无监督学习的盲目性。
-
公开(公告)号:CN116189759B
公开(公告)日:2025-05-06
申请号:CN202310234744.9
申请日:2023-03-13
Applicant: 南京农业大学
Abstract: 本发明公开了一种群体感应先导化合物的虚拟筛选方法,主要流程包括:输入的分子化合物结构通过预处理构建分子邻接矩阵,送入GNN1网络生成化合物特征;输入的蛋白质序列,提取其蛋白质氨基酸组成、二肽频率组合成蛋白质初步特征向量,送入交叉网络,生成交叉融合特征;同时,将蛋白质序列生成对应的接触图,随后送入GNN2网络生成蛋白序列特征;最终将三个特征组合送入全连接层预测得到亲和力值。本发明可用于发现新的具有群体感应活性的化合物,为青枯菌等细菌的控制和防治提供新的思路和手段;同时该方法可以高效地筛选出与PhcA和PhcR蛋白结合的化合物,从而发现具有群体感应活性的化合物。
-
公开(公告)号:CN114842908A
公开(公告)日:2022-08-02
申请号:CN202210294418.2
申请日:2022-03-24
Applicant: 南京农业大学
Abstract: 本发明公开了一种使用序列k‑mer频率优化特征精准识别土壤致病菌污染的方法,其步骤为:步骤一、选取合适的k‑mer片段长度,进行频率特征提取;步骤二、对提取的数据进行归一化处理;步骤三、构建交叉融合神经网络;网络由输入层、残差网络、深度网络、交叉网络和特征合并层组成;步骤四、模型预测;第一次使用先训练神经网络参数,再将待预测细菌DNA序列通过步骤一方法提取频率特征,送入训练好的残差神经网络,输出预测结果。本发明准确率优于现有k‑mer特征预测算法;自动地将k‑mer特征组合在一起,高效学习低维特征交叉和高维非线性特征,生成更优的模型。模型不需要人工特征工程或遍历搜索,具有较低的计算成本。
-
-
-