-
公开(公告)号:CN114612709A
公开(公告)日:2022-06-10
申请号:CN202210185676.7
申请日:2022-02-28
Applicant: 南京信息工程大学
Abstract: 本发明公开了一种图像金字塔特征指导的多尺度目标检测方法,包括步骤:S1,以彩色图像作为网络输入,以FPN作为目标检测的框架,采用排序下采样方法提取图像特征;S2,以同一幅彩色图像作为输入,采用构建的双瓶颈子卷积网络提取图像金字塔中每层级的位置信息和细节特征;S3,将步骤S2中提取的每层级的图像特征和主干网络对应的深层特征输入到构建的分层式特征融合模块中,完成高分辨率、弱语义特征与低分辨率、强语义特征的融合;S4,引入Focal loss重构损失函数,完成目标检测。本发明不仅能加强空间位置信息,而且能避免在下采样中丢失大量细节信息,从而增加了目标检测网络对小目标和邻近目标的辨识度。
-
公开(公告)号:CN113610329B
公开(公告)日:2022-01-04
申请号:CN202111168227.3
申请日:2021-10-08
Applicant: 南京信息工程大学
Abstract: 本发明提出了一种双流卷积长短期记忆网络的短时临近降雨预报方法,属于天气预报技术领域。该方法通过两个分别对不同周期的降雨数据进行学习的长期预测子网络和短期预测子网络共同捕捉降雨过程中的时空变化,设计了一种全新的长短期记忆单元来提升子网络的时空特征学习能力,最后通过重结合模块实现对降雨过程的预测。该发明能够充分地捕获连续运动的降雨过程时空相关性,实现对区域内降雨运动趋势更精确的预报。
-
公开(公告)号:CN113610329A
公开(公告)日:2021-11-05
申请号:CN202111168227.3
申请日:2021-10-08
Applicant: 南京信息工程大学
Abstract: 本发明提出了一种双流卷积长短期记忆网络的短时临近降雨预报方法,属于天气预报技术领域。该方法通过两个分别对不同周期的降雨数据进行学习的长期预测子网络和短期预测子网络共同捕捉降雨过程中的时空变化,设计了一种全新的长短期记忆单元来提升子网络的时空特征学习能力,最后通过重结合模块实现对降雨过程的预测。该发明能够充分地捕获连续运动的降雨过程时空相关性,实现对区域内降雨运动趋势更精确的预报。
-
公开(公告)号:CN111489525A
公开(公告)日:2020-08-04
申请号:CN202010234969.0
申请日:2020-03-30
Applicant: 南京信息工程大学
Abstract: 本发明公开了一种多数据融合的气象预测预警方法,利用多源4D-WRF-EnSRF资料同化系统对气象观测数据进行同化,作为DeepConvLSTMs人工智能预测网络的输入,实现该网络的训练、多数据源的实时降雨量预测;精细化划分降雨量区间,设置预警等级;无缝隙划分各移动气象台的覆盖区域;规划移动气象台、气象监控中心、多手段发布平台、预测预警信息发布系统,保证系统架构的实时联动。本发明实现多数据采集融合、实时上传和发布预测预警结果、快速锁定待救援区域、下发救援方案、保证救援现场通信,提高气象预测预警的时效性和准确性,提高预警信息发布的覆盖率,增强气象防灾减灾服务能力和救援能力,有效减少暴雨灾害及其次生衍生灾害造成的生命财产损失。
-
公开(公告)号:CN113554032B
公开(公告)日:2021-12-14
申请号:CN202111105080.3
申请日:2021-09-22
Applicant: 南京信息工程大学
Abstract: 本发明公开了一种基于高度感知的多路并行网络的遥感图像分割方法,以原始遥感图像作为网络输入,设计多路并行网络作为提取图像特征的底层网络用以提取遥感图像的多层语义特征图,同时固定每条路径中的空间分辨率;利用门控高低层特征融合方法,将低层特征图与高层特征图相互融合,同时门机制在融合过程中筛选出来自每层的有效信息;引入高度特征解码器分支,将数字地表面模型图像作为训练时的额外标签,利用学习高度几何特征作为语义上下文的指导,并且该模型在测试时不需要遥感图像对应的数字地表面图像作为额外的标签;最后构建联合损失函数对多任务进行训练。本发明减少了模型的参数量,提高了遥感图像分割的准确度。
-
公开(公告)号:CN113554032A
公开(公告)日:2021-10-26
申请号:CN202111105080.3
申请日:2021-09-22
Applicant: 南京信息工程大学
Abstract: 本发明公开了一种基于高度感知的多路并行网络的遥感图像分割方法,以原始遥感图像作为网络输入,设计多路并行网络作为提取图像特征的底层网络用以提取遥感图像的多层语义特征图,同时固定每条路径中的空间分辨率;利用门控高低层特征融合方法,将低层特征图与高层特征图相互融合,同时门机制在融合过程中筛选出来自每层的有效信息;引入高度特征解码器分支,将数字地表面模型图像作为训练时的额外标签,利用学习高度几何特征作为语义上下文的亲和指导,并且该模型在测试时不需要遥感图像对应的数字地表面图像作为额外的标签;最后构建联合损失函数对多任务进行训练。本发明减少了模型的参数量,提高了遥感图像分割的准确度。
-
公开(公告)号:CN114373094B
公开(公告)日:2025-02-21
申请号:CN202111489573.1
申请日:2021-12-08
Applicant: 南京信息工程大学
IPC: G06V10/26 , G06V10/764 , G06V10/774 , G06V10/80 , G06V10/56 , G06V10/46 , G06V10/82 , G06V10/75 , G06N3/0442 , G06N3/0464 , G06N3/045 , G06N3/0895
Abstract: 本发明公开了一种基于弱监督学习的门控特征注意力等变分割方法,具体为:1、训练第一分类网络,权重共享得到第二分类网络;训练第一门控的部分融合模块,权重共享得到第二门控的部分融合模块;2、对原始图像进行仿射变换得到仿射图像;3、将原始图像、仿射图像分别输入至两个分类网络;4、将两个分类网络的最后一层的特征层分别作为类激活映射、仿射类激活映射;5、将两个分类网络的特定阶段输出的特征图输入至相应的门控的部分融合模块,得到门控特征图和仿射门控特征图;6、将步骤4和步骤5得到的结果输入至交叉特征注意力模型中,得到改进的类激活映射;7、根据改进的类激活映射实现图像的分割。本发明提高了弱监督网络的分割精度。
-
公开(公告)号:CN114373094A
公开(公告)日:2022-04-19
申请号:CN202111489573.1
申请日:2021-12-08
Applicant: 南京信息工程大学
IPC: G06V10/764 , G06V10/26 , G06V10/774 , G06V10/80 , G06V10/56 , G06V10/46 , G06V10/82 , G06V10/75 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于弱监督学习的门控特征注意力等变分割方法,具体为:1、训练第一分类网络,权重共享得到第二分类网络;训练第一门控的部分融合模块,权重共享得到第二门控的部分融合模块;2、对原始图像进行仿射变换得到仿射图像;3、将原始图像、仿射图像分别输入至两个分类网络;4、将两个分类网络的最后一层的特征层分别作为类激活映射、仿射类激活映射;5、将两个分类网络的特定阶段输出的特征图输入至相应的门控的部分融合模块,得到门控特征图和仿射门控特征图;6、将步骤4和步骤5得到的结果输入至交叉特征注意力模型中,得到改进的类激活映射;7、根据改进的类激活映射实现图像的分割。本发明提高了弱监督网络的分割精度。
-
公开(公告)号:CN215378944U
公开(公告)日:2021-12-31
申请号:CN202121689024.4
申请日:2021-07-23
Applicant: 南京信息工程大学
Inventor: 马文妍
IPC: H04K3/00
Abstract: 本实用新型公开了一种反无人机用全向干扰器,包括调节盒,所述调节盒内的底部固定有固定框,所述调节盒内的一端侧壁上安装有转轴,所述转轴上连接有转动臂和L形杆,所述转动臂的一侧转动连接有连接杆,两个连接杆的一端共同转动连接有T型杆,所述T型杆的一端贯穿固定框的顶部并延伸至固定框内,所述T型杆上套装有第一弹簧,所述第一弹簧的一端抵触在固定框内的顶部,所述L形杆的一侧贯穿调节盒的顶部并延伸至调节盒的上端。本实用新型的全向干扰器能够进行快速安装与拆卸,可以节省拆卸人工成本和时间成本,同时能够保证全向干扰器安装的牢固性和稳定性,极大方便了全向干扰器的快速架设,提高了全向干扰器安装的实用性和防护性。
-
公开(公告)号:CN212414801U
公开(公告)日:2021-01-29
申请号:CN201922207339.X
申请日:2019-12-10
Applicant: 南京信息工程大学
Inventor: 马文妍
IPC: A41D13/05
Abstract: 本实用新型公开了一种能够稳定佩戴的自发热型腰腹护具,它解决了现有技术中保暖护具固定不便、保暖不够的问题,具有不易移位、能够长时间保暖而不脱离保护部位的效果。其技术方案为:包括保暖加长区,所述保暖加长区的两端分别与腰带连接为一体;保暖加长区一端的腰带设有第一粘贴层,另一端的腰带设有多个第二粘贴层,第一粘贴层能够与不同位置的第二粘贴层粘附在一起;所述保暖加长区设置发热层,保暖加长区两侧具有设定弧度。
-
-
-
-
-
-
-
-
-