-
公开(公告)号:CN113610329B
公开(公告)日:2022-01-04
申请号:CN202111168227.3
申请日:2021-10-08
Applicant: 南京信息工程大学
Abstract: 本发明提出了一种双流卷积长短期记忆网络的短时临近降雨预报方法,属于天气预报技术领域。该方法通过两个分别对不同周期的降雨数据进行学习的长期预测子网络和短期预测子网络共同捕捉降雨过程中的时空变化,设计了一种全新的长短期记忆单元来提升子网络的时空特征学习能力,最后通过重结合模块实现对降雨过程的预测。该发明能够充分地捕获连续运动的降雨过程时空相关性,实现对区域内降雨运动趋势更精确的预报。
-
公开(公告)号:CN113610329A
公开(公告)日:2021-11-05
申请号:CN202111168227.3
申请日:2021-10-08
Applicant: 南京信息工程大学
Abstract: 本发明提出了一种双流卷积长短期记忆网络的短时临近降雨预报方法,属于天气预报技术领域。该方法通过两个分别对不同周期的降雨数据进行学习的长期预测子网络和短期预测子网络共同捕捉降雨过程中的时空变化,设计了一种全新的长短期记忆单元来提升子网络的时空特征学习能力,最后通过重结合模块实现对降雨过程的预测。该发明能够充分地捕获连续运动的降雨过程时空相关性,实现对区域内降雨运动趋势更精确的预报。
-
公开(公告)号:CN113554032B
公开(公告)日:2021-12-14
申请号:CN202111105080.3
申请日:2021-09-22
Applicant: 南京信息工程大学
Abstract: 本发明公开了一种基于高度感知的多路并行网络的遥感图像分割方法,以原始遥感图像作为网络输入,设计多路并行网络作为提取图像特征的底层网络用以提取遥感图像的多层语义特征图,同时固定每条路径中的空间分辨率;利用门控高低层特征融合方法,将低层特征图与高层特征图相互融合,同时门机制在融合过程中筛选出来自每层的有效信息;引入高度特征解码器分支,将数字地表面模型图像作为训练时的额外标签,利用学习高度几何特征作为语义上下文的指导,并且该模型在测试时不需要遥感图像对应的数字地表面图像作为额外的标签;最后构建联合损失函数对多任务进行训练。本发明减少了模型的参数量,提高了遥感图像分割的准确度。
-
公开(公告)号:CN113554032A
公开(公告)日:2021-10-26
申请号:CN202111105080.3
申请日:2021-09-22
Applicant: 南京信息工程大学
Abstract: 本发明公开了一种基于高度感知的多路并行网络的遥感图像分割方法,以原始遥感图像作为网络输入,设计多路并行网络作为提取图像特征的底层网络用以提取遥感图像的多层语义特征图,同时固定每条路径中的空间分辨率;利用门控高低层特征融合方法,将低层特征图与高层特征图相互融合,同时门机制在融合过程中筛选出来自每层的有效信息;引入高度特征解码器分支,将数字地表面模型图像作为训练时的额外标签,利用学习高度几何特征作为语义上下文的亲和指导,并且该模型在测试时不需要遥感图像对应的数字地表面图像作为额外的标签;最后构建联合损失函数对多任务进行训练。本发明减少了模型的参数量,提高了遥感图像分割的准确度。
-
公开(公告)号:CN115113301B
公开(公告)日:2022-11-18
申请号:CN202211010895.8
申请日:2022-08-23
Applicant: 南京信息工程大学 , 南京中网卫星通信股份有限公司
Abstract: 本发明提供一种基于多源数据融合的应急短临预报方法及系统,涉及短临天气预报技术领域。本发明的步骤为:将多时次多通道卫星云图序列、多时次雷达回波图序列和相同时序下的基本气象预报因子打包作为数据样本,进行预处理和数据增强,得到训练样本;构建用于融合多源数据的网络,将训练样本输入网络中进行训练,得到训练好的多源数据融合网络;将预测区域之前符合短临预报有效时间内的多时次多通道卫星云图序列、多时次雷达回波图序列和相同时序下的基本气象预报因子输入所述训练好的多源数据融合网络,对区域未来若干时间段进行天气预测。本发明的应急短临预报方法,极大提高了预测的准确率。
-
公开(公告)号:CN114373094B
公开(公告)日:2025-02-21
申请号:CN202111489573.1
申请日:2021-12-08
Applicant: 南京信息工程大学
IPC: G06V10/26 , G06V10/764 , G06V10/774 , G06V10/80 , G06V10/56 , G06V10/46 , G06V10/82 , G06V10/75 , G06N3/0442 , G06N3/0464 , G06N3/045 , G06N3/0895
Abstract: 本发明公开了一种基于弱监督学习的门控特征注意力等变分割方法,具体为:1、训练第一分类网络,权重共享得到第二分类网络;训练第一门控的部分融合模块,权重共享得到第二门控的部分融合模块;2、对原始图像进行仿射变换得到仿射图像;3、将原始图像、仿射图像分别输入至两个分类网络;4、将两个分类网络的最后一层的特征层分别作为类激活映射、仿射类激活映射;5、将两个分类网络的特定阶段输出的特征图输入至相应的门控的部分融合模块,得到门控特征图和仿射门控特征图;6、将步骤4和步骤5得到的结果输入至交叉特征注意力模型中,得到改进的类激活映射;7、根据改进的类激活映射实现图像的分割。本发明提高了弱监督网络的分割精度。
-
公开(公告)号:CN112183886B
公开(公告)日:2024-03-15
申请号:CN202011138708.5
申请日:2020-10-22
Applicant: 南京信息工程大学
Abstract: 本申请涉及一种基于卷积网络和注意力机制的短时临近降雨预测方法。该方法包括:获取被预测区域在当前时间点前预设时段内的降雨过程图像;将所述降雨过程图像进行预处理,获得完全时空特性的张量;完全时空特性的张量输入多尺度特征融合的神经网络中进行特征提取,获得局部短期运动特征;将所述局部短期运动特征输入到结合了注意力机制的卷积长短期记忆人工神经网络中进行降雨预测,获得降雨预测信息;将所述预测结果信息输入到卷积层进行反向重构,获得所述被预测区域的未来降雨图像序列。解决了时空信息丢失容易,预测精度低的问题,提高了短时临近降雨的预测精度。
-
公开(公告)号:CN114373094A
公开(公告)日:2022-04-19
申请号:CN202111489573.1
申请日:2021-12-08
Applicant: 南京信息工程大学
IPC: G06V10/764 , G06V10/26 , G06V10/774 , G06V10/80 , G06V10/56 , G06V10/46 , G06V10/82 , G06V10/75 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于弱监督学习的门控特征注意力等变分割方法,具体为:1、训练第一分类网络,权重共享得到第二分类网络;训练第一门控的部分融合模块,权重共享得到第二门控的部分融合模块;2、对原始图像进行仿射变换得到仿射图像;3、将原始图像、仿射图像分别输入至两个分类网络;4、将两个分类网络的最后一层的特征层分别作为类激活映射、仿射类激活映射;5、将两个分类网络的特定阶段输出的特征图输入至相应的门控的部分融合模块,得到门控特征图和仿射门控特征图;6、将步骤4和步骤5得到的结果输入至交叉特征注意力模型中,得到改进的类激活映射;7、根据改进的类激活映射实现图像的分割。本发明提高了弱监督网络的分割精度。
-
公开(公告)号:CN112183886A
公开(公告)日:2021-01-05
申请号:CN202011138708.5
申请日:2020-10-22
Applicant: 南京信息工程大学
Abstract: 本申请涉及一种基于卷积网络和注意力机制的短时临近降雨预测方法。该方法包括:获取被预测区域在当前时间点前预设时段内的降雨过程图像;将所述降雨过程图像进行预处理,获得完全时空特性的张量;完全时空特性的张量输入多尺度特征融合的神经网络中进行特征提取,获得局部短期运动特征;将所述局部短期运动特征输入到结合了注意力机制的卷积长短期记忆人工神经网络中进行降雨预测,获得降雨预测信息;将所述预测结果信息输入到卷积层进行反向重构,获得所述被预测区域的未来降雨图像序列。解决了时空信息丢失容易,预测精度低的问题,提高了短时临近降雨的预测精度。
-
公开(公告)号:CN115113301A
公开(公告)日:2022-09-27
申请号:CN202211010895.8
申请日:2022-08-23
Applicant: 南京信息工程大学 , 南京中网卫星通信股份有限公司
Abstract: 本发明提供一种基于多源数据融合的应急短临预报方法及系统,涉及短临天气预报技术领域。本发明的步骤为:将多时次多通道卫星云图序列、多时次雷达回波图序列和相同时序下的基本气象预报因子打包作为数据样本,进行预处理和数据增强,得到训练样本;构建用于融合多源数据的网络,将训练样本输入网络中进行训练,得到训练好的多源数据融合网络;将预测区域之前符合短临预报有效时间内的多时次多通道卫星云图序列、多时次雷达回波图序列和相同时序下的基本气象预报因子输入所述训练好的多源数据融合网络,对区域未来若干时间段进行天气预测。本发明的应急短临预报方法,极大提高了预测的准确率。
-
-
-
-
-
-
-
-
-