-
公开(公告)号:CN118692114A
公开(公告)日:2024-09-24
申请号:CN202411163106.3
申请日:2024-08-23
Applicant: 南京信息工程大学
IPC: G06V40/10 , G06V20/52 , G06V10/762 , G06V10/44 , G06N3/0455 , G06N3/0464 , G06N3/088
Abstract: 本发明公开了一种基于Transformer和融合聚类的对比学习无监督行人重识别方法,包括以下步骤:(1)监控摄像头拍摄行人视频上传至云端服务器,服务器对行人进行跟踪并裁剪图片;(2)使用Transformer网络提取行人图像特征;(3)融合聚类模块对提取的图像特征进行融合聚类;(4)利用多级对比学习模块获取实例之间的关系;本发明采用自动化的方式对行人进行识别,减少了人工走访调查的工作量。
-
公开(公告)号:CN118609173A
公开(公告)日:2024-09-06
申请号:CN202411089728.6
申请日:2024-08-09
Applicant: 南京信息工程大学
IPC: G06V40/10 , G06V10/143 , G06V10/40 , G06V10/74 , G06V10/80 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/084
Abstract: 本发明提出了一种基于中间模态学习的跨模态行人重识别方法及系统。其中,行人重识别方法包括如下步骤:获取成对的可见光原始图像和红外原始图像;提取可见光原始图像、红外原始图像的中间模态,得到可见光中间模态、红外中间模态;通过空间注意力和通道注意力优化所述可见光原始图像、红外原始图像、可见光中间模态、红外中间模态,输出优化结果;建立损失约束限制所述优化结果,输出识别结果。本发明提出了一个主要由中间模态图片生成器、双重注意力组合块以及特征损失约束组成的中间模态学习网络,具有精度高、还原度高的特点。
-
公开(公告)号:CN117612266A
公开(公告)日:2024-02-27
申请号:CN202410095404.7
申请日:2024-01-24
Applicant: 南京信息工程大学
IPC: G06V40/20 , G06V20/40 , G06V20/52 , G06V10/44 , G06V10/52 , G06V10/80 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/0455 , G06N3/084 , G06V10/62
Abstract: 本发明公开了一种基于多尺度图像及特征层对齐的跨分辨率行人重识别方法,所述方法包括:对跨分辨率样本视频进行预处理,将视频分割为连续的帧,并统一图像尺寸,选取高分辨率行人图像和低分辨率行人图像;对高分辨率行人图像进行多尺度下采样,对多尺度的图像重构网络进行训练;每个尺度的重构图像输入到与图像重构网络对应连接的行人重识别网络,对行人重识别网络进行训练;将待识别的视频处理后输入训练好的相应尺度的图像重构网络,重构的图像输入到对应的训练好的行人重识别网络,得到最终的行人特征表示。本发明解决跨分辨率的行人图像导致行人重识别的检索精度低、匹配效果差的问题,达到了提高低分辨率行人重识别的效果。
-
公开(公告)号:CN118692114B
公开(公告)日:2024-10-29
申请号:CN202411163106.3
申请日:2024-08-23
Applicant: 南京信息工程大学
IPC: G06V40/10 , G06V20/52 , G06V10/762 , G06V10/44 , G06N3/0455 , G06N3/0464 , G06N3/088
Abstract: 本发明公开了一种基于Transformer和融合聚类的对比学习无监督行人重识别方法,包括以下步骤:(1)监控摄像头拍摄行人视频上传至云端服务器,服务器对行人进行跟踪并裁剪图片;(2)使用Transformer网络提取行人图像特征;(3)融合聚类模块对提取的图像特征进行融合聚类;(4)利用多级对比学习模块获取实例之间的关系;本发明采用自动化的方式对行人进行识别,减少了人工走访调查的工作量。
-
公开(公告)号:CN117935172B
公开(公告)日:2024-06-14
申请号:CN202410325387.1
申请日:2024-03-21
Applicant: 南京信息工程大学
IPC: G06V20/52 , G06V10/20 , G06V10/774 , G06V10/776 , G06V10/82 , G06N3/0464 , G06N3/084
Abstract: 本发明公开了一种基于光谱信息过滤的可见光红外行人重识别方法及系统,所述方法包括以下步骤:(1)获取原始数据,划分训练集、验证集和测试集并进行预处理;(2)将得到的批量训练样本随机组成跨模态图像对;(3)基于PyTorch搭建三分支行人重识别网络并设置训练参数;(4)将训练时期分为V‑T和V‑I两个阶段,当处于V‑T阶段时,计算语义一致损失更新网络权重,将过渡模态作为过滤条件,从可见光模态中保留与红外模态最为相关的光谱信息;(5)当处于V‑I阶段时计算级联聚合损失,更新网络权重,直接在可见光和红外模态间实现模态对齐,提取模态共享表示;使用验证集验证算法的精度,保存最优精度的网络权重。
-
公开(公告)号:CN117935172A
公开(公告)日:2024-04-26
申请号:CN202410325387.1
申请日:2024-03-21
Applicant: 南京信息工程大学
IPC: G06V20/52 , G06V10/20 , G06V10/774 , G06V10/776 , G06V10/82 , G06N3/0464 , G06N3/084
Abstract: 本发明公开了一种基于光谱信息过滤的可见光红外行人重识别方法及系统,所述方法包括以下步骤:(1)获取原始数据,划分训练集、验证集和测试集并进行预处理;(2)将得到的批量训练样本随机组成跨模态图像对;(3)基于PyTorch搭建三分支行人重识别网络并设置训练参数;(4)将训练时期分为V‑T和V‑I两个阶段,当处于V‑T阶段时,计算语义一致损失更新网络权重,将过渡模态作为过滤条件,从可见光模态中保留与红外模态最为相关的光谱信息;(5)当处于V‑I阶段时计算级联聚合损失,更新网络权重,直接在可见光和红外模态间实现模态对齐,提取模态共享表示;使用验证集验证算法的精度,保存最优精度的网络权重。
-
公开(公告)号:CN117612266B
公开(公告)日:2024-04-19
申请号:CN202410095404.7
申请日:2024-01-24
Applicant: 南京信息工程大学
IPC: G06V40/20 , G06V20/40 , G06V20/52 , G06V10/44 , G06V10/52 , G06V10/80 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/0455 , G06N3/084 , G06V10/62
Abstract: 本发明公开了一种基于多尺度图像及特征层对齐的跨分辨率行人重识别方法,所述方法包括:对跨分辨率样本视频进行预处理,将视频分割为连续的帧,并统一图像尺寸,选取高分辨率行人图像和低分辨率行人图像;对高分辨率行人图像进行多尺度下采样,对多尺度的图像重构网络进行训练;每个尺度的重构图像输入到与图像重构网络对应连接的行人重识别网络,对行人重识别网络进行训练;将待识别的视频处理后输入训练好的相应尺度的图像重构网络,重构的图像输入到对应的训练好的行人重识别网络,得到最终的行人特征表示。本发明解决跨分辨率的行人图像导致行人重识别的检索精度低、匹配效果差的问题,达到了提高低分辨率行人重识别的效果。
-
-
-
-
-
-