-
公开(公告)号:CN118822048B
公开(公告)日:2024-12-06
申请号:CN202411305389.0
申请日:2024-09-19
Applicant: 南京信息工程大学
IPC: G06Q10/04 , G06Q50/26 , G06F18/15 , G06F18/213 , G06F18/2431 , G06N3/0455 , G06N3/049 , G06N3/0499 , G06N3/0464 , G06N3/084 , G01W1/10 , G06F123/02
Abstract: 本发明公开了一种前兆因子深度融合的次季节极端降水预测方法,包括:基于优化的损失函数,构建融合数值模式降水预测、历史降水观测以及观测前兆因子的时空变换网络深度学习模型,基于数值模式降水预测数据集、历史降水观测数据集以及观测前兆因子数据集展开模型训练与优化;利用训练好的模型,输入目标时间的数值模式降水预测和前兆因子数据进行预测,输出次季节极端降水预测结果;本发明通过数值模式降水预测、历史降水观测和观测前兆因子数据的深度融合,利用一种新的时空变换网络深度学习方法,显著提高了次季节极端降水预测的准确性和全面性,具有极高的应用价值和广泛的应用前景。
-
公开(公告)号:CN119066524A
公开(公告)日:2024-12-03
申请号:CN202411565389.4
申请日:2024-11-05
Applicant: 南京信息工程大学
IPC: G06F18/2415 , G01W1/14 , G01W1/02 , G06F18/214
Abstract: 本发明公开了一种基于TimeUnet和物候学知识的短临降水预报方法,包括以下步骤:(1)采集气象要素观测资料和鸟声异常信息样本,并对数据进行预处理;(2)对预处理后的气象要素观测资料和鸟声异常信息样本进行特征提取,构建特征数据集;(3)搭建融合了TimesNet和Unet的深度学习模型TimeUnet并设计定制化损失函数;(4)对TimeUnet模型进行训练,调整模型中的超参数以得到最优的模型;(5)基于实时的气象要素观测资料和鸟声异常信息样本生成短临降水预报产品;本发明有效提高了暴雨的预报技巧。
-
公开(公告)号:CN118050729A
公开(公告)日:2024-05-17
申请号:CN202410447311.6
申请日:2024-04-15
Applicant: 南京信息工程大学
IPC: G01S13/95 , G06N3/0455 , G06N3/0464 , G06N3/0475 , G06N3/082 , G01S7/41 , G01S7/40
Abstract: 本发明公开了一种基于改进U‑Net的雷达回波时间降尺度订正方法,包括以下步骤:(1)收集发布的CMA‑SH数值模式预报数据,并进行初步的预报因子筛选和预处理;(2)搭建基于改进U‑Net的深度学习模型即传统U‑Net基础上增加基于对抗生成网络的TSR‑GAN时间降尺度模块,并定义新的阈值法评估指标,以此为基础更改适用于雷达回波预报订正问题的损失函数;(3)基于步骤(2)雷达回波数据集与改进U‑Net模型进行训练,获得订正后高分辨率的雷达回波预报产品;本发明通过降尺度得到分钟级预报,提高了对短临系统的预报能力。
-
公开(公告)号:CN117236201A
公开(公告)日:2023-12-15
申请号:CN202311525721.X
申请日:2023-11-16
Applicant: 南京信息工程大学 , 无锡学院 , 南京气象科技创新研究院 , 中国人民解放军国防科技大学
IPC: G06F30/27 , G01W1/10 , G06N3/0455 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种基于Diffusion和ViT的降尺度方法,包括以下步骤:S1建立低分辨率数值模式降水预报与高分辨率降水观测样本,并进行预处理;S2构建Diffusion‑Vision‑Transformer降水预报模型;S3训练模型,直至Diffusion‑Vision‑Transformer的误差收敛,保存模型并进行预测;本发明通过利用Vision Transformer模型代替原始Diffusion模型中的U‑Net结构,大幅提高模型的训练效率,减低模型用于预测的时间。
-
公开(公告)号:CN118366046B
公开(公告)日:2024-08-30
申请号:CN202410799661.9
申请日:2024-06-20
Applicant: 南京信息工程大学
IPC: G06V20/10 , G06V10/44 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种基于深度学习并结合地形的风场降尺度方法,包括:(1)采集地面高程数据、低分辨率数值模式预报数据、高分辨率观测数据,并对数据进行预处理,最后构成降尺度数据集;(2)搭建基于矢量的神经网络深度学习降尺度模型;(3)基于降尺度数据集对基于矢量的神经网络深度学习降尺度模型进行训练;(4)基于实时低分辨率数值模式预报数据以及高分辨率地面高程数据,通过训练好的模型生成高分辨率降尺度数据。本发明能够实现经纬度分辨率从0.25°×0.25°到0.1°×0.1°的降尺度预测,提高了网络拟合效果,并可以综合把握矢量的方向和大小,产生更具有应用价值、准确率更高的结果。
-
公开(公告)号:CN118227979A
公开(公告)日:2024-06-21
申请号:CN202410652939.X
申请日:2024-05-24
Applicant: 南京信息工程大学
IPC: G06F18/15 , G06F18/214 , G06N3/0464 , G06F30/27 , G06F119/02
Abstract: 本发明公开一种基于改进卷积神经网络利用热带太平洋次表层海温异常的预测ENSO方法,包括以下步骤:(1)采集热带太平洋次表层海温数据、Nino3.4观测数据,并对数据进行预处理,构建训练数据集;(2)搭建加入了注意力机制SENet的CNN模型;(3)基于所述训练集和模型进行训练;(4)生成预测产品利用皮尔森积矩相关系数计算得到ENSO预测;本发明所用数据资源和计算资源少,计算速度更快,预测时效长;突出次表层海温的经向扰动,更能体现热带太平洋次表层海温异常东传的特征。
-
公开(公告)号:CN118033590A
公开(公告)日:2024-05-14
申请号:CN202410437687.9
申请日:2024-04-12
Applicant: 南京信息工程大学
Abstract: 本发明公开了一种基于改进VIT神经网络的短临降水预报方法,包括以下步骤:(1)采集气象雷达回波资料、风廓线雷达资料,并进行质量控制和特征提取;(2)搭建融合了深层链接和自适应最优权重分配的VIT神经网络模型;(3)构建训练集后对模型进行训练,并引入基于均方根误差和对流面积变化率的损失函数;(4)基于训练好的模型预报未来的雷达回波,并转换得到降水预报场;(5)基于频率匹配法和消空法对降水预报场进行后处理,得到最终的短临降水预报产品;本发明能有效改善小量级降水的空报和大量级降水的漏报,进而进一步提高降水预报技巧。
-
公开(公告)号:CN117236201B
公开(公告)日:2024-02-23
申请号:CN202311525721.X
申请日:2023-11-16
Applicant: 南京信息工程大学 , 无锡学院 , 南京气象科技创新研究院 , 中国人民解放军国防科技大学
IPC: G06F30/27 , G01W1/10 , G06N3/0455 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种基于Diffusion和ViT的降尺度方法,包括以下步骤:S1建立低分辨率数值模式降水预报与高分辨率降水观测样本,并进行预处理;S2构建Diffusion‑Vision‑Transformer降水预报模型;S3训练模型,直至Diffusion‑Vision‑Transformer的误差收敛,保存模型并进行预测;本发明通过利用Vision Transformer模型代替原始Diffusion模型中的U‑Net结构,大幅提高模型的训练效率,减低模型用于预测的时间。
-
公开(公告)号:CN115857062A
公开(公告)日:2023-03-28
申请号:CN202310174997.1
申请日:2023-02-28
Applicant: 南京信息工程大学 , 南京气象科技创新研究院
IPC: G01W1/10 , G06N3/0464 , G06N3/096
Abstract: 本发明公开了一种基于多通道卷积神经网络的次季节台风生成预报方法,包括以下步骤:(1)统计台风逐周生成频次,对台风频次进行数据重组,提取不同时间尺度的周期性信号,并过滤多余的噪声;(2)基于信息流方法诊断各时间尺度周期性信号的可预测性来源构建掩膜场;(3)搭建多通道卷积神经网络模型,基于再分析资料构建的训练集对模型展开训练;(4)基于采集到的数值模型预报数据展开迁移学习,得到最终的预报模型;(5)将预设时间内的预报数据代入模型,生成次季节台风生成预报;本发明提升次季节台风生成预报技巧;有效滤除大尺度因子场中的多余噪音,进而有效提高模型预报效果。
-
公开(公告)号:CN114881381A
公开(公告)日:2022-08-09
申请号:CN202210815291.4
申请日:2022-07-11
Applicant: 南京信息工程大学
Abstract: 本发明公开了基于改进卷积神经网络的城市积水水位预测方法及系统,属于城市内涝水位预测技术领域,所述方法包括:获取当前积水水位、城市地面高程数据、未来预设时间内的降水预报数据;基于未来预设时间内的降水预报数据识别出目标站点周围的雨带,提取雨带的对象属性;将降水预报数据、城市地面高程数据、雨带的对象属性进行预处理后组成输入变量;将输入变量输入到预训练好的基于改进卷积神经网络的深度学习模型中,得到所述未来预设时间内目标站点的积水变率,结合当前积水水位得到所述未来预设时间内的积水水位;所述模型经过训练后具有高度非线性和强鲁棒性,本发明技术方案相较现有技术具有更长的预测时效,有极强的应用价值。
-
-
-
-
-
-
-
-
-