一种气象台站测量日总辐射曝辐量预测优化方法

    公开(公告)号:CN107274024A

    公开(公告)日:2017-10-20

    申请号:CN201710473102.9

    申请日:2017-06-21

    CPC classification number: G06Q10/04 G06N3/084

    Abstract: 本发明公开了一种气象台站测量日总辐射曝辐量预测优化方法,包括:提取测量日总辐射曝辐量时间序列中的显著周期序列并分离得到残差序列,采用基于粒子群算法优化的BP神经网络对显著周期序列进行预测;对残差序列先进行小波分解,之后对小波分解各分量序列采用基于粒子群算法优化的BP神经网络进行预测,各分量预测结果之和为残差序列的预测结果;由显著周期序列和残差序列的预测结果可以获得最终日总辐射曝辐量预测结果。本发明可以有效提高对于残差序列的预报精度,从而整体提高台站测量日总辐射曝辐量的预报精度。

    一种基于扩散进化算法的神经架构搜索方法

    公开(公告)号:CN119886226A

    公开(公告)日:2025-04-25

    申请号:CN202510370248.5

    申请日:2025-03-27

    Abstract: 本发明公开了一种基于扩散进化算法的神经架构搜索方法,该方法首先构建超网,该超网包括子网,每个子网通过连续编码为每条连接边上的每个操作赋予权重;然后获取不同类别的图片构建成数据集;最后对超网权重和子网编码进行交替优化,直至满足约束条件时停止优化,得到最优子网编码,进而得到神经网络的架构。本发明创新性地将扩散模型的迭代去噪机制与进化算法的全局搜索策略相融合,通过结合扩散模型的去噪机制与进化算法的全局搜索能力,构建超网并交替优化网络权重和子网编码;利用自适应噪声调度和密度估计,增强种群多样性,避免局部最优,能够更好地找到适合任务的最优神经网络架构。

    一种基于CLIP损失与感知损失的扩散模型LoRA微调优化方法及系统

    公开(公告)号:CN119478587A

    公开(公告)日:2025-02-18

    申请号:CN202510027124.7

    申请日:2025-01-08

    Abstract: 本发明提出了一种基于CLIP损失与感知损失的扩散模型LoRA微调优化方法及系统,所述方法包括:步骤1,在LoRA微调过程中,结合CLIP损失和感知损失,动态调整CLIP损失和感知损失的权重;步骤2,利用CLIP模型计算去噪后的中间图像与目标文本的语义相似度,并根据相似度差异优化扩散模型的噪声预测能力;步骤3,采用感知损失计算中间图像与目标图像在特征空间的差异,并优化扩散模型的噪声预测能力,提升生成图像的视觉质量与细节保真度;步骤4,根据训练进展调整是否启用CLIP损失和感知损失。通过引入CLIP损失,模型在微调训练过程中能够更好地将图像与文本进行对齐,使得生成的图像更加符合文本提示的描述。

Patent Agency Ranking