-
公开(公告)号:CN119540725A
公开(公告)日:2025-02-28
申请号:CN202510027737.0
申请日:2025-01-08
Applicant: 南京信息工程大学
IPC: G06V10/82 , G06N3/0464 , G06N3/084 , G06V10/20 , G06V10/40 , G06V10/764 , G06V10/766 , G06V10/80
Abstract: 本发明提供了一种基于YOLOv11改进的下水道内部缺陷检测方法和系统,所述方法通过自适应特征融合模块实现多层次特征的动态加权融合,增强模型对小目标和复杂背景的检测能力;通过SENet注意力机制提高通道特征的选择性,降低背景干扰;引入MPDIoU损失函数改进边界框回归损失。改进的模型在裂痕、障碍物、腐蚀、变形等下水道缺陷的检测任务中性能显著优于原始YOLOv11,特别是在mAP50(平均精度)、Box精度(P)和召回率(R)等关键指标上均有显著提升。该发明可实现对下水道内部多类型缺陷的高效、精准检测,为下水道维护与管理提供了更优的解决方案。
-
公开(公告)号:CN107274024A
公开(公告)日:2017-10-20
申请号:CN201710473102.9
申请日:2017-06-21
Applicant: 南京信息工程大学
Abstract: 本发明公开了一种气象台站测量日总辐射曝辐量预测优化方法,包括:提取测量日总辐射曝辐量时间序列中的显著周期序列并分离得到残差序列,采用基于粒子群算法优化的BP神经网络对显著周期序列进行预测;对残差序列先进行小波分解,之后对小波分解各分量序列采用基于粒子群算法优化的BP神经网络进行预测,各分量预测结果之和为残差序列的预测结果;由显著周期序列和残差序列的预测结果可以获得最终日总辐射曝辐量预测结果。本发明可以有效提高对于残差序列的预报精度,从而整体提高台站测量日总辐射曝辐量的预报精度。
-
公开(公告)号:CN119886226A
公开(公告)日:2025-04-25
申请号:CN202510370248.5
申请日:2025-03-27
Applicant: 南京信息工程大学
IPC: G06N3/0464 , G06N3/084 , G06N3/0455 , G06N3/086
Abstract: 本发明公开了一种基于扩散进化算法的神经架构搜索方法,该方法首先构建超网,该超网包括子网,每个子网通过连续编码为每条连接边上的每个操作赋予权重;然后获取不同类别的图片构建成数据集;最后对超网权重和子网编码进行交替优化,直至满足约束条件时停止优化,得到最优子网编码,进而得到神经网络的架构。本发明创新性地将扩散模型的迭代去噪机制与进化算法的全局搜索策略相融合,通过结合扩散模型的去噪机制与进化算法的全局搜索能力,构建超网并交替优化网络权重和子网编码;利用自适应噪声调度和密度估计,增强种群多样性,避免局部最优,能够更好地找到适合任务的最优神经网络架构。
-
公开(公告)号:CN119478587A
公开(公告)日:2025-02-18
申请号:CN202510027124.7
申请日:2025-01-08
Applicant: 南京信息工程大学
IPC: G06V10/774 , G06V10/80 , G06N3/082
Abstract: 本发明提出了一种基于CLIP损失与感知损失的扩散模型LoRA微调优化方法及系统,所述方法包括:步骤1,在LoRA微调过程中,结合CLIP损失和感知损失,动态调整CLIP损失和感知损失的权重;步骤2,利用CLIP模型计算去噪后的中间图像与目标文本的语义相似度,并根据相似度差异优化扩散模型的噪声预测能力;步骤3,采用感知损失计算中间图像与目标图像在特征空间的差异,并优化扩散模型的噪声预测能力,提升生成图像的视觉质量与细节保真度;步骤4,根据训练进展调整是否启用CLIP损失和感知损失。通过引入CLIP损失,模型在微调训练过程中能够更好地将图像与文本进行对齐,使得生成的图像更加符合文本提示的描述。
-
公开(公告)号:CN119623515A
公开(公告)日:2025-03-14
申请号:CN202510170315.9
申请日:2025-02-17
Applicant: 南京信息工程大学
IPC: G06N3/042 , G06N3/045 , G06N3/0464 , G06N3/084 , G06N3/086 , G06F18/213 , G06F18/214 , G06F18/22 , G06F18/23 , G06F18/21
Abstract: 本发明提供了一种基于相似性代理辅助的演化神经架构搜索方法和系统,所述方法包括:步骤1,初始化一个架构种群,选择性能最佳的架构作为初始基准架构;步骤2,构建一种图神经网络变体作为特征提取器;步骤3,构建代理模型,通过联合损失函数训练代理模型;步骤4,根据适应度值保留高潜力架构,并对高潜力架构进行真实性能评估,将评估结果加入训练集;将当前种群与代理模型预测筛选出的高性能架构合并,通过环境选择策略更新种群;步骤5,重复步骤3和步骤4直至种群性能收敛,最终输出全局最优架构。本发明能够在有限的计算资源下快速搜索到高性能的神经网络架构,为神经网络的自动化设计与优化提供了一种高效、智能的新型解决方案。
-
-
-
-