基于遥感影像和深度学习超分算法的湿地精细化制图方法

    公开(公告)号:CN119399314B

    公开(公告)日:2025-05-16

    申请号:CN202411977076.X

    申请日:2024-12-31

    Abstract: 本发明公开了一种基于遥感影像和深度学习超分算法的湿地精细化制图方法,首先,获取研究区高、低分辨率遥感影像,对其预处理后,将高分辨率湿地样本与低分辨率影像配对,得到高分辨率湿地数据集;其次,获取土地覆盖数据并提取湿地信息得到低分辨率湿地数据集;然后,将低、高分辨率湿地数据集输入基于卷积块注意力模块的卷积变换超分网络重建特征,并利用基于Scharr卷积和快速傅里叶卷积的U‑Net架构进行分割;接着,针对湿地制图任务,设计三种损失函数的加权损失函数,从图像细节、时序和图像一致性提高湿地制图精度;最后,经评估选最优模型用于湿地精细化制图,从而提升湿地精细化制图精度,为各领域的湿地研究提供有力支持。

    基于遥感影像和深度学习超分算法的湿地精细化制图方法

    公开(公告)号:CN119399314A

    公开(公告)日:2025-02-07

    申请号:CN202411977076.X

    申请日:2024-12-31

    Abstract: 本发明公开了一种基于遥感影像和深度学习超分算法的湿地精细化制图方法,首先,获取研究区高、低分辨率遥感影像,对其预处理后,将高分辨率湿地样本与低分辨率影像配对,得到高分辨率湿地数据集;其次,获取土地覆盖数据并提取湿地信息得到低分辨率湿地数据集;然后,将低、高分辨率湿地数据集输入基于卷积块注意力模块的卷积变换超分网络重建特征,并利用基于Scharr卷积和快速傅里叶卷积的U‑Net架构进行分割;接着,针对湿地制图任务,设计三种损失函数的加权损失函数,从图像细节、时序和图像一致性提高湿地制图精度;最后,经评估选最优模型用于湿地精细化制图,从而提升湿地精细化制图精度,为各领域的湿地研究提供有力支持。

Patent Agency Ranking