一种内置可旋转挡板调谐液体阻尼器的设计方法

    公开(公告)号:CN114065414B

    公开(公告)日:2024-11-29

    申请号:CN202111244888.X

    申请日:2021-10-26

    Abstract: 本发明公开了一种内置可旋转挡板调谐液体阻尼器的设计方法,包括以下步骤:S1、根据受控结构的动力特性和平面构造,确定TLD的形状、尺寸和储水高度;S2、基于TLD的形状和尺寸,对TLD内部挡板的构造尺寸和安装方位进行设计;S3、建立内置可旋转挡板TLD数值模型并模拟TLD液体的晃动过程,获取TLD的模态参数;S4、建立结构和足尺TLD的耦合系统,计算风荷载作用下结构耦合振动响应及其减振率;S5、判断内置可旋转挡板TLD能否使受控结构达到理想的控制效果。本发明方法实现形式清晰简洁,便于实际工程应用,可以使得内置可旋转挡板调谐液体阻尼器设计更为精确和可靠。

    一种基于压差的二维风速风向测量装置

    公开(公告)号:CN109406825B

    公开(公告)日:2024-07-23

    申请号:CN201811416073.3

    申请日:2018-11-26

    Abstract: 本发明公开了一种基于压差的二维风速风向测量装置,包括空心立柱,以及设置在空心立柱上的两个以相差45°叠放的箱体式的二维方柱,并在其四周立面分别开设有一排测压孔;其中,各对立两个立面上的测压孔,分别通过支管汇集至与其相应的测压总管;在各测压总管的管路上设置有压差传感器、第一第二压差校零开关。采用测压的方式测量风速,利用气动平均方法,减少压差传感器数量,降低成本,设置了压差校零开关,提高精度。测压所用的管道以及传感器也可以通过绝缘管路连接而避免雷电等恶劣环境的影响,适用于恶劣环境中超高层建筑物顶部和其它野外长期风速风向测量。

    基于风洞试验的结构-TLD系统的耦合振动实现方法

    公开(公告)号:CN113673012B

    公开(公告)日:2023-08-22

    申请号:CN202110864128.2

    申请日:2021-07-29

    Abstract: 本发明公开了一种基于风洞试验的结构‑TLD系统的耦合振动实现方法,包括以下步骤:S1、进行大气边界层流场模拟,制作高层建筑试验模型;S2、获得高层建筑模型的风荷载时程并转化到建筑原型;S3、根据高层建筑原型的动力特性和风效应,计算TLD所需参数;S4、设计TLD的参数,对TLD进行建模;S5、建立高层建筑的动力学方程,计算结构各楼层的振动响应;S6、模拟TLD的晃荡过程;S7、将TLD控制力传递到结构的动力学方程中,更新结构的外力向量,计算出下一时刻结构的振动响应;S8、判断是否所有时间计算完毕。本方法基于超高层建筑原型和TLD原型,建立结构理论模型和TLD数值模型实现结构‑TLD的耦合振动,可有效解决现有方法由于缩尺效应导致的结果失真问题。

    一种结构-TLD系统的子系统动力特性检测方法

    公开(公告)号:CN113686528B

    公开(公告)日:2022-10-25

    申请号:CN202110855817.7

    申请日:2021-07-28

    Abstract: 本发明公开了一种结构‑TLD系统的子系统动力特性检测方法,方法包括以下步骤:S1、测量高层建筑和TLD耦合振动响应,实时记录耦合振动信号;S2、由耦合信号构造Hankel矩阵从而计算Toeplitz矩阵;S3、由Toeplitz矩阵识别耦合系统的模态参数并由稳定性准则判断识别结果的准确性;S4、判断识别结果是否连续5阶保持一致性;S5、通过重构耦合系统的连续状态矩阵检测结构和TLD对应的模态参数;S6、通过结构和TLD的动力特性参数对系统减振性能进行评价。本发明方法避免了对功率谱进行预先假设的问题,而且不需要测量安装TLD之前的结构振动响应,只需要重构耦合系统的状态空间模型即可对系统动力特性参数进行检测。

    一种结构-TLD系统的子系统动力特性检测方法

    公开(公告)号:CN113686528A

    公开(公告)日:2021-11-23

    申请号:CN202110855817.7

    申请日:2021-07-28

    Abstract: 本发明公开了一种结构‑TLD系统的子系统动力特性检测方法,方法包括以下步骤:S1、测量高层建筑和TLD耦合振动响应,实时记录耦合振动信号;S2、由耦合信号构造Hankel矩阵从而计算Toeplitz矩阵;S3、由Toeplitz矩阵识别耦合系统的模态参数并由稳定性准则判断识别结果的准确性;S4、判断识别结果是否连续5阶保持一致性;S5、通过重构耦合系统的连续状态矩阵检测结构和TLD对应的模态参数;S6、通过结构和TLD的动力特性参数对系统减振性能进行评价。本发明方法避免了对功率谱进行预先假设的问题,而且不需要测量安装TLD之前的结构振动响应,只需要重构耦合系统的状态空间模型即可对系统动力特性参数进行检测。

    基于风洞试验的结构-TLD系统的耦合振动实现方法

    公开(公告)号:CN113673012A

    公开(公告)日:2021-11-19

    申请号:CN202110864128.2

    申请日:2021-07-29

    Abstract: 本发明公开了一种基于风洞试验的结构‑TLD系统的耦合振动实现方法,包括以下步骤:S1、进行大气边界层流场模拟,制作高层建筑试验模型;S2、获得高层建筑模型的风荷载时程并转化到建筑原型;S3、根据高层建筑原型的动力特性和风效应,计算TLD所需参数;S4、设计TLD的参数,对TLD进行建模;S5、建立高层建筑的动力学方程,计算结构各楼层的振动响应;S6、模拟TLD的晃荡过程;S7、将TLD控制力传递到结构的动力学方程中,更新结构的外力向量,计算出下一时刻结构的振动响应;S8、判断是否所有时间计算完毕。本方法基于超高层建筑原型和TLD原型,建立结构理论模型和TLD数值模型实现结构‑TLD的耦合振动,可有效解决现有方法由于缩尺效应导致的结果失真问题。

    调谐液体阻尼器性能参数的检测方法、系统、设备和介质

    公开(公告)号:CN111751070A

    公开(公告)日:2020-10-09

    申请号:CN202010649654.2

    申请日:2020-07-08

    Abstract: 本发明公开了一种调谐液体阻尼器性能参数的检测方法、系统、设备和介质,首先确定输入激励的有色噪声功率谱,模拟出用于振动试验的定制有色噪声激励,在定制有色噪声激励下的振动台试验过程中,通过测量系统采集TLD缩尺模型中液体响应数据,得到TLD耦合响应信号;基于TLD耦合响应信号,获取到解耦后的模态响应信号,从解耦后的模态响应信号进行参数识别,得到TLD的参数性能。本发明能够快速、高效的检测出TLD性能参数,且具有资源占用量少的优点,并且本发明不受TLD形状和内部所设置构件的限制,适用于一些形状不规则、设置内部构件的TLD的性能参数检测。

    一种模拟高层建筑烟囱效应的试验装置及其方法

    公开(公告)号:CN109540454A

    公开(公告)日:2019-03-29

    申请号:CN201811533901.1

    申请日:2018-12-14

    Abstract: 本发明提供了一种模拟高层建筑烟囱效应的试验装置及其方法,该装置包括:电梯试验台架、固定装置和电梯门机系统,电梯试验台架包括电梯厅门、电梯厅门门框、电梯轿门、电梯轿门门框、挡板和斜导流板,电梯厅门外侧设有外侧测压孔,电梯厅门内侧测压孔设在内测压贴片上,均通过测压管连接电子压力扫描阀;该试验方法为:实验室风速递增,采集电梯厅门各测压点的风压;将各测压点的风压差时程进行计算处理,获得电梯门系统的临界承压阈值;改变电梯厅门的开闭力矩,获得不同参数下电梯门系统的临界承压阈值。本发明利用风压模拟烟囱效应,获得了电梯门系统的临界承压阈值,为提高电梯机电产品的性能与优化设计提供了科学依据。

    一种气动弹性实验系统
    9.
    发明授权

    公开(公告)号:CN106768788B

    公开(公告)日:2019-01-01

    申请号:CN201611237907.5

    申请日:2016-12-28

    Abstract: 本发明公开了一种气动弹性实验系统,包括底座、支承件、建筑物模型、若干配重块、弹性装置、可变阻尼器、若干位移测量装置、万向联轴器和微处理器;建筑物模型的一端固定连接于支承件的中部并向上延伸,各配重块固定连接于支承件且位于建筑物模型的侧面;万向联轴器的一端固定连接于底座,另一端固定连接于支承件,且万向联轴器与建筑物模型的位置对应;弹性装置位于万向联轴器的侧面,且弹性装置的一端固定连接于底座,另一端固定连接于支承件;可变阻尼器用于向支承件提供阻尼;各位移测量装置用于测量支承件的位移;可变阻尼器和各位移测量装置均与微处理器信号连接;以便在进行风洞实验时准确控制建筑物模型的结构阻尼。

    一种高频底座力天平的动力校准方法

    公开(公告)号:CN106709460B

    公开(公告)日:2018-02-23

    申请号:CN201611234889.5

    申请日:2016-12-28

    Abstract: 本发明公开了一种高频底座力天平的动力校准方法,包括以下步骤:对测量信号x(t)进行白化得到白化后信号z(t);寻求正交矩阵V,使得z(t)=Vq(t),进而得到分离信号q(t);在模态坐标下,对分离信号进行固有频率和模态阻尼比识别;根据识别得到的参数,对分离信号进行修正;由分离信号逆推,得到修正后的气动荷载。本发明对耦合信号进行分离,对由分离得到的独立成分分量,结合气动力特征采用曲线拟合方法逐一对分离信号进行固有频率和模态阻尼比的识别,进而修正并消除了模态耦合系统的动力放大作用,最终得到真实的气动荷载谱密度矩阵,可最大程度地提高参数识别和相应HFFB动态信号校准的可靠性,为后续高层建筑原型风致响应的准确估计奠定重要基础。

Patent Agency Ranking