一种平衡的实例分割数据合成方法

    公开(公告)号:CN114066788B

    公开(公告)日:2024-03-29

    申请号:CN202111245120.4

    申请日:2021-10-26

    Abstract: 本发明公开了一种平衡的实例分割数据合成方法,包括:1)使用原始数据集的图像和标签构建对象实例库;2)读取原始数据集中的一个图像和标签,根据标签对这个图像生成前景背景掩模图,根据这个图像的尺寸均匀生成10×10个候选点;3)设定一个粘贴尺寸列表,根据设定的粘贴尺寸列表,将10×10个候选点为中心的区域与前景背景掩模图进行计算,选取不和前景重叠的区域加入粘贴区域;4)通过类别平衡从对象实例库中选取对象,进行缩放后粘贴对象到粘贴区域,并更新标签。本发明使用图像合成的方法实现数据增强,具有更好的适用性和多样性,可以应用于难度更大的实例分割任务,计算量非常少,运算速度快,基本上不会增加训练网络的时间。

    一种基于图像文本的仪表检测分类方法

    公开(公告)号:CN113673509B

    公开(公告)日:2023-06-09

    申请号:CN202110855223.6

    申请日:2021-07-28

    Abstract: 本发明公开了一种基于图像文本的仪表检测分类方法,包括:1)仪表定位数据集的构建,改进YOLO网络训练,使用网络输出表盘图像;2)字符检测数据集的构建,改进EAST网络训练,使用网络输出字符图像;3)字符识别数据集的构建,CRNN网络训练,使用网络输出字符信息;4)文本分类数据集的构建,TextCNN网络训练,使用网络输出仪表类型。本发明使用神经网络实现仪表检测及仪表文本信息检测识别,具有更高的精度以及在不同背景下有更好的泛化能力,对于不同尺寸的仪表均能进行准确检测,不存在采集角度与距离的局限,利用仪表上的字符信息,可解决在机器视觉领域中能识别出仪表位置但难以区分仪表类型的问题,做到了不仅能检测出仪表并能识别出仪表的类型。

    一种用于人脸识别中数据拟合估计的困难样本发掘方法

    公开(公告)号:CN112800959B

    公开(公告)日:2023-06-06

    申请号:CN202110117852.9

    申请日:2021-01-28

    Abstract: 本发明公开了一种用于人脸识别中数据拟合估计的困难样本发掘方法,包括步骤:1)准备一个批次的人脸图像样本及其对应的标签,将其输入特征提取模型提取人脸特征;2)将提取到的人脸特征输入类中心权重层,其输出经过归一化处理,得到相似度矩阵;3)构建样本权重调制器,并通过该调制器对相似度矩阵进行重新赋予权重;4)将重新赋予权重的相似度矩阵输入损失层,计算该批次人脸图像样本的损失值;5)根据损失值对特征提取模型的参数进行更新,并进行模型性能验证,若达标,则终止训练;若不达标,则重复步骤1)至步骤5)。本发明在训练前期抑制困难样本,在训练后期强调困难样本,从而达到加速模型收敛和提升训练后期模型学习效率的目的。

    一种基于深度学习的电路板元器件缺陷检测方法

    公开(公告)号:CN113077453B

    公开(公告)日:2022-09-13

    申请号:CN202110403802.7

    申请日:2021-04-15

    Abstract: 本发明公开了一种基于深度学习的电路板元器件缺陷检测方法,通过电路板检测生产线的摄像机拍摄待检测电路板,对训练集及待测图片进行区域分割,将SOLOv2网络进行改进以分割图像中的各类元器件及电路板底板,并对多区域检测结果进行融合提高检测精度,然后利用电路板底板类掩膜预测结果矫正图片尺寸,由掩膜预测结果计算各元器件中心位置并基于Hu不变矩计算元器件的主轴方向,将提取出的元器件位置与模板电路板中各元器件的设定位置进行匈牙利匹配,匹配成功的双方对比位置及方向差异,判断出该处是否存在缺件、偏移缺陷,并获得位置偏移量和角度偏移量。本发明可以实现精确检测并定位电路板中含有缺陷的元器件,保证电路板的焊接质量。

    一种用于低分辨率人脸识别的数据增强方法

    公开(公告)号:CN113887371A

    公开(公告)日:2022-01-04

    申请号:CN202111132441.3

    申请日:2021-09-26

    Abstract: 本发明公开了一种用于低分辨率人脸识别的数据增强方法,包括:1)从训练数据集中抽取一个批次的人脸图像样本;2)从批次中随机地选取若干张人脸图像样本;3)对选取到的人脸图像样本进行预先设定倍率的下采样,得到低分辨人脸图像样本;4)对低分辨率人脸图像样本进行恢复和重建,得到与原始图像尺寸相同的高清人脸图像样本;5)使用重建的高清人脸图像样本替换步骤1)中该批次内对应位置上的原始人脸图像样本;6)将替换后的该批次人脸图像样本送入预先选定的人脸识别模型进行优化;7)验证人脸识别模型的性能是否达标,若达标,则停止训练;若不达标,则重复步骤1)‑7)。本发明解决了现有的人脸识别算法在低分辨率场景下准确率低的问题。

    一种基于图像文本的仪表检测分类方法

    公开(公告)号:CN113673509A

    公开(公告)日:2021-11-19

    申请号:CN202110855223.6

    申请日:2021-07-28

    Abstract: 本发明公开了一种基于图像文本的仪表检测分类方法,包括:1)仪表定位数据集的构建,改进YOLO网络训练,使用网络输出表盘图像;2)字符检测数据集的构建,改进EAST网络训练,使用网络输出字符图像;3)字符识别数据集的构建,CRNN网络训练,使用网络输出字符信息;4)文本分类数据集的构建,TextCNN网络训练,使用网络输出仪表类型。本发明使用神经网络实现仪表检测及仪表文本信息检测识别,具有更高的精度以及在不同背景下有更好的泛化能力,对于不同尺寸的仪表均能进行准确检测,不存在采集角度与距离的局限,利用仪表上的字符信息,可解决在机器视觉领域中能识别出仪表位置但难以区分仪表类型的问题,做到了不仅能检测出仪表并能识别出仪表的类型。

    一种基于深度学习的电路板元器件缺陷检测方法

    公开(公告)号:CN113077453A

    公开(公告)日:2021-07-06

    申请号:CN202110403802.7

    申请日:2021-04-15

    Abstract: 本发明公开了一种基于深度学习的电路板元器件缺陷检测方法,通过电路板检测生产线的摄像机拍摄待检测电路板,对训练集及待测图片进行区域分割,将SOLOv2网络进行改进以分割图像中的各类元器件及电路板底板,并对多区域检测结果进行融合提高检测精度,然后利用电路板底板类掩膜预测结果矫正图片尺寸,由掩膜预测结果计算各元器件中心位置并基于Hu不变矩计算元器件的主轴方向,将提取出的元器件位置与模板电路板中各元器件的设定位置进行匈牙利匹配,匹配成功的双方对比位置及方向差异,判断出该处是否存在缺件、偏移缺陷,并获得位置偏移量和角度偏移量。本发明可以实现精确检测并定位电路板中含有缺陷的元器件,保证电路板的焊接质量。

Patent Agency Ranking