-
公开(公告)号:CN111814622A
公开(公告)日:2020-10-23
申请号:CN202010603251.4
申请日:2020-06-29
Applicant: 华南农业大学
Abstract: 本发明公开了一种农作物病虫害类型识别方法、系统、设备和介质,首先获取训练集和验证集,构建生成对抗网络,通过训练集和验证集训练生成对抗网络,得到农作物编码模型;同时构建残差注意力网络,通过训练集和验证集训练后,得到病虫害分类模型;针对需要进行病虫害类型识别的图片,将其作为测试样本,首先输入到农作物编码模型中确定该图片是否为农作物图片,若是,则将测试样本输入到病虫害分类模型,通过病虫害分类模型识别出图片中的病虫害类型。基于本发明识别方法,能够准确且快速的检测出农作物病虫害类型。
-
公开(公告)号:CN111814622B
公开(公告)日:2023-08-04
申请号:CN202010603251.4
申请日:2020-06-29
Applicant: 华南农业大学
IPC: G06V20/10 , G06V10/774 , G06V10/764 , G06V10/82 , G06N3/0475 , G06N3/094 , G06N3/0464
Abstract: 本发明公开了一种农作物病虫害类型识别方法、系统、设备和介质,首先获取训练集和验证集,构建生成对抗网络,通过训练集和验证集训练生成对抗网络,得到农作物编码模型;同时构建残差注意力网络,通过训练集和验证集训练后,得到病虫害分类模型;针对需要进行病虫害类型识别的图片,将其作为测试样本,首先输入到农作物编码模型中确定该图片是否为农作物图片,若是,则将测试样本输入到病虫害分类模型,通过病虫害分类模型识别出图片中的病虫害类型。基于本发明识别方法,能够准确且快速的检测出农作物病虫害类型。
-