-
公开(公告)号:CN118396988B
公开(公告)日:2024-10-22
申请号:CN202410824677.0
申请日:2024-06-25
Applicant: 华侨大学
IPC: G06T7/00 , G06N3/006 , G06N3/0499 , G06N3/08 , G06V10/40 , G06V10/764
Abstract: 本发明公开了一种基于改进Alex网络的CT图像肾结石检测方法,涉及医院图像处理技术领域其特征在于,包括以下步骤:构建CT图像肾结石检测模型,所述CT图像肾结石检测模型包括依次连接的特征提取模块和分类器;所述特征提取模块采用Alex网络,所述分类器采用萤火虫群优化ELM网络,所述萤火虫群优化ELM网络采用萤火虫群算法加速ELM网络的运算过程;使用批量归一化技术训练CT图像肾结石检测模型;利用训练好的CT图像肾结石检测模型对输入的CT图像进行肾结石检测。本发明采用批量归一化提高AlexNet的训练速度,采用萤火虫群优化算法来优化ELM网络初始参数,提高训练的收敛速度和性能,最终提升了肾结石检测的速度和精度。
-
公开(公告)号:CN118396988A
公开(公告)日:2024-07-26
申请号:CN202410824677.0
申请日:2024-06-25
Applicant: 华侨大学
IPC: G06T7/00 , G06N3/006 , G06N3/0499 , G06N3/08 , G06V10/40 , G06V10/764
Abstract: 本发明公开了一种基于改进Alex网络的CT图像肾结石检测方法,涉及医院图像处理技术领域其特征在于,包括以下步骤:构建CT图像肾结石检测模型,所述CT图像肾结石检测模型包括依次连接的特征提取模块和分类器;所述特征提取模块采用Alex网络,所述分类器采用萤火虫群优化ELM网络,所述萤火虫群优化ELM网络采用萤火虫群算法加速ELM网络的运算过程;使用批量归一化技术训练CT图像肾结石检测模型;利用训练好的CT图像肾结石检测模型对输入的CT图像进行肾结石检测。本发明采用批量归一化提高AlexNet的训练速度,采用萤火虫群优化算法来优化ELM网络初始参数,提高训练的收敛速度和性能,最终提升了肾结石检测的速度和精度。
-