一种考虑非充分激励的锂电池参数在线辨识方法及系统

    公开(公告)号:CN112595979A

    公开(公告)日:2021-04-02

    申请号:CN202011399821.9

    申请日:2020-12-02

    Inventor: 万一鸣 朱坤 郑英

    Abstract: 本发明公开了一种考虑非充分激励的锂电池参数在线辨识方法及系统,包括:基于电路理论,建立锂电池RC等效电路模型的动态方程,并在动态方程中引入电池端电压的测量噪声项;将动态方程离散化,得到离散方程,并转换成回归形式,采用电池内部电压损耗的后验误差信息表示电池端电压的测量噪声,构建得到锂电池的ARMAX模型;根据实时采集的电池充放电电流和端电压,采用基于方向遗忘因子的递推增广最小二乘算法辨识上述ARMAX模型中的锂电池参数值;通过遗忘因子保持算法对参数变化的敏感度,使得算法能够实时追踪参数的变化,且只在有信息激励的方向上进行遗忘,保证算法即使在非充分激励的条件下也保持参数估计的稳定性和准确性。

    一种考虑非充分激励的锂电池参数在线辨识方法及系统

    公开(公告)号:CN112595979B

    公开(公告)日:2021-10-08

    申请号:CN202011399821.9

    申请日:2020-12-02

    Inventor: 万一鸣 朱坤 郑英

    Abstract: 本发明公开了一种考虑非充分激励的锂电池参数在线辨识方法及系统,包括:基于电路理论,建立锂电池RC等效电路模型的动态方程,并在动态方程中引入电池端电压的测量噪声项;将动态方程离散化,得到离散方程,并转换成回归形式,采用电池内部电压损耗的后验误差信息表示电池端电压的测量噪声,构建得到锂电池的ARMAX模型;根据实时采集的电池充放电电流和端电压,采用基于方向遗忘因子的递推增广最小二乘算法辨识上述ARMAX模型中的锂电池参数值;通过遗忘因子保持算法对参数变化的敏感度,使得算法能够实时追踪参数的变化,且只在有信息激励的方向上进行遗忘,保证算法即使在非充分激励的条件下也保持参数估计的稳定性和准确性。

Patent Agency Ranking