一种基于强化学习方法和规则进化的可重构车间动态调度方法

    公开(公告)号:CN118963272A

    公开(公告)日:2024-11-15

    申请号:CN202411024659.0

    申请日:2024-07-29

    Abstract: 本发明公开了基于强化学习方法和规则进化的可重构车间动态调度方法,属于车间调度领域,包括:以最小化工件总拖期成本为目标,利用遗传规划算法对启发式调度规则进行选择和组合,得到了指导加工工件选择的复合调度规则,构建了效率优先的拓扑单元分配与重组的分层策略,融合了Double DQN、dueling DQN和优先经验回放机制提高DQN算法的寻优能力,并搭建了融合循环神经网络与多层感知机的智能体神经网络模型,在训练过程中提取车间加工任务分配的时序信息,同时建立了面向新工件到达的动态事件响应机制。本发明能够提高可重构车间调度的实时性和优化质量,并提高制造资源利用率,从而降低企业的生产成本,保证制造系统的稳定运行。

Patent Agency Ranking