-
公开(公告)号:CN110345475B
公开(公告)日:2020-05-19
申请号:CN201910667732.9
申请日:2019-07-23
Applicant: 华中科技大学 , 北京大学 , 新奥科技发展有限公司
Abstract: 本发明属于燃烧器领域,并具体公开了一种预混式防回火无焰燃烧器,其中:预混单元用于将燃料和空气预混后获得预混燃料并送入防回火单元;防回火单元用于将预混燃料送入喷射单元并防止回火现象的发生,其包括沿气体流动方向依次连接的渐缩管、防回火通道和文丘里管;喷射单元用于喷射预混燃料,其包括喷射通道和第一钝体。本发明通过设置预混单元,能够将燃料与空气混合均匀获得预混燃料,并利用防回火单元的渐缩管、扩缩栅板和文丘里管等结构有效地防止回火现象的发生,同时通过在喷射单元中设置可收缩的旋流叶片和第一钝体,能够实现预热阶段与无焰燃烧阶段的快速切换,保证燃烧的稳定性,同时还能够实现超低NOx排放。
-
公开(公告)号:CN110425517B
公开(公告)日:2020-07-10
申请号:CN201910667708.5
申请日:2019-07-23
Applicant: 华中科技大学 , 北京大学 , 新奥科技发展有限公司
Abstract: 本发明属于微尺度燃烧设备领域,并公开了一种微尺度无焰燃烧器,其中该燃烧器外壳上设置有烟气管道,用于将烟气排出;夹层空间为燃烧器外壳与燃烧器内壳之间的区域;燃烧器内壳用于形成燃烧空间,其前端设置有预设数量的稀释孔和加速体,其后端设置有烟气出口,用于将燃烧产生的烟气送入夹层空间;钝体设置在燃烧空间内,处于预热阶段时,钝体贴近点火器,待其加热到燃料的自燃温度后,将钝体贴近燃烧器内壳,从而进入无焰燃烧阶段。本发明能够实现无焰燃烧,使得燃料在中温低氧的氛围下稳定氧化,从而大量降低了氮氧化物的生成量,同时可以避免因燃烧器接触面积大造成的散热问题,同时还可以利用烟气预热燃料和氧化剂,提高燃烧器的燃烧效率。
-
公开(公告)号:CN110410787B
公开(公告)日:2020-05-19
申请号:CN201910666886.6
申请日:2019-07-23
Applicant: 华中科技大学
Abstract: 本发明属于无焰燃烧器领域,并具体公开了一种氢气水蒸气富氧无焰燃烧器,其中氢气喷管与燃烧室连接;第一水蒸气喷管套设在氢气喷管的外侧,并与燃烧室连接,用于在预热阶段向燃烧室喷射水蒸气;一次风喷管套设在第一水蒸气喷管的外侧,并与燃烧室连接,用于在预热阶段向燃烧室喷射一次风;二次风喷管与燃烧室连接,用于在无焰燃烧阶段向燃烧室喷射二次风;燃烧室用于为氢气进行富氧燃烧提供空间。本发明利用水蒸气将一次风与氢气分隔,能够有效降低氢气的燃烧速率,从而提高燃烧器的安全性,待达到预设温度后,切换为二次风喷管提供氧气以此实现氢气的无焰燃烧,能够保证燃烧器内的温度分布较为均匀,从而避免了氢气燃烧产生的安全隐患。
-
公开(公告)号:CN110345478B
公开(公告)日:2020-05-19
申请号:CN201910666893.6
申请日:2019-07-23
Applicant: 华中科技大学 , 北京大学 , 新奥科技发展有限公司
Abstract: 本发明属于燃烧器领域,并具体公开了一种带振荡腔稳火装置的无焰燃烧器。该无焰燃烧器的中心燃气喷管的出口与振荡腔体连接,用于提供燃气;空气调节喷管对称设置在振荡腔体的两侧,用于为燃气在振荡腔体内燃烧形成值班火焰提供空气;振荡腔体利用振荡作用激发值班火焰燃烧后剩余的燃气形成振荡射流后喷出;空气旋流喷管嵌套在振荡腔体的外部,用于在预热阶段提供旋流空气;空气直喷喷管平行并且对称设置在中心燃气喷管的外侧,用于在无焰燃烧阶段提供空气。本发明通过设置振荡腔体,不仅能够形成振荡射流,从而保证炉膛内的燃气均匀分布,并且能够在振荡腔体内形成值班火焰,从而避免在预热阶段与无焰燃烧阶段进行切换时出现熄火问题。
-
公开(公告)号:CN110260321B
公开(公告)日:2020-06-02
申请号:CN201910581635.8
申请日:2019-06-30
Applicant: 华中科技大学
Abstract: 本发明属于无焰燃烧领域,并具体公开了一种实现超低NOx排放的旋转式无焰燃烧器。该燃烧器的中心燃气喷管用于输送和喷射燃气;空气进口直管用于向空气通道输送空气;空气通道的壁面对称设置有空气调节喷口,利用其喷出的空气产生反作用力,带动旋转式无焰燃烧器绕中心轴线旋转;通过第一截流圆环的移动控制空气直喷喷管的开闭,从而在无焰燃烧阶段喷射空气;通过第二截流圆环的移动控制空气旋流喷管的开闭,从而在预热燃烧阶段喷射空气。本发明利用空气调节喷口产生的反作用力带动空气和燃气绕中心轴线旋转,并使得燃气与卷吸的高温烟气在整个炉膛内进行混合,从而扩大反应区域并获得更加均匀的炉内温度分布,进而实现超低NOx排放。
-
公开(公告)号:CN110345478A
公开(公告)日:2019-10-18
申请号:CN201910666893.6
申请日:2019-07-23
Applicant: 华中科技大学 , 北京大学 , 新奥科技发展有限公司
Abstract: 本发明属于燃烧器领域,并具体公开了一种带振荡腔稳火装置的无焰燃烧器。该无焰燃烧器的中心燃气喷管的出口与振荡腔体连接,用于提供燃气;空气调节喷管对称设置在振荡腔体的两侧,用于为燃气在振荡腔体内燃烧形成值班火焰提供空气;振荡腔体利用振荡作用激发值班火焰燃烧后剩余的燃气形成振荡射流后喷出;空气旋流喷管嵌套在振荡腔体的外部,用于在预热阶段提供旋流空气;空气直喷喷管平行并且对称设置在中心燃气喷管的外侧,用于在无焰燃烧阶段提供空气。本发明通过设置振荡腔体,不仅能够形成振荡射流,从而保证炉膛内的燃气均匀分布,并且能够在振荡腔体内形成值班火焰,从而避免在预热阶段与无焰燃烧阶段进行切换时出现熄火问题。
-
公开(公告)号:CN110345475A
公开(公告)日:2019-10-18
申请号:CN201910667732.9
申请日:2019-07-23
Applicant: 华中科技大学 , 北京大学 , 新奥科技发展有限公司
Abstract: 本发明属于燃烧器领域,并具体公开了一种预混式防回火无焰燃烧器,其中:预混单元用于将燃料和空气预混后获得预混燃料并送入防回火单元;防回火单元用于将预混燃料送入喷射单元并防止回火现象的发生,其包括沿气体流动方向依次连接的渐缩管、防回火通道和文丘里管;喷射单元用于喷射预混燃料,其包括喷射通道和第一钝体。本发明通过设置预混单元,能够将燃料与空气混合均匀获得预混燃料,并利用防回火单元的渐缩管、扩缩栅板和文丘里管等结构有效地防止回火现象的发生,同时通过在喷射单元中设置可收缩的旋流叶片和第一钝体,能够实现预热阶段与无焰燃烧阶段的快速切换,保证燃烧的稳定性,同时还能够实现超低NOx排放。
-
公开(公告)号:CN110425517A
公开(公告)日:2019-11-08
申请号:CN201910667708.5
申请日:2019-07-23
Applicant: 华中科技大学 , 北京大学 , 新奥科技发展有限公司
Abstract: 本发明属于微尺度燃烧设备领域,并公开了一种微尺度无焰燃烧器,其中该燃烧器外壳上设置有烟气管道,用于将烟气排出;夹层空间为燃烧器外壳与燃烧器内壳之间的区域;燃烧器内壳用于形成燃烧空间,其前端设置有预设数量的稀释孔和加速体,其后端设置有烟气出口,用于将燃烧产生的烟气送入夹层空间;钝体设置在燃烧空间内,处于预热阶段时,钝体贴近点火器,待其加热到燃料的自燃温度后,将钝体贴近燃烧器内壳,从而进入无焰燃烧阶段。本发明能够实现无焰燃烧,使得燃料在中温低氧的氛围下稳定氧化,从而大量降低了氮氧化物的生成量,同时可以避免因燃烧器接触面积大造成的散热问题,同时还可以利用烟气预热燃料和氧化剂,提高燃烧器的燃烧效率。
-
公开(公告)号:CN110410787A
公开(公告)日:2019-11-05
申请号:CN201910666886.6
申请日:2019-07-23
Applicant: 华中科技大学
Abstract: 本发明属于无焰燃烧器领域,并具体公开了一种氢气水蒸气富氧无焰燃烧器,其中氢气喷管与燃烧室连接;第一水蒸气喷管套设在氢气喷管的外侧,并与燃烧室连接,用于在预热阶段向燃烧室喷射水蒸气;一次风喷管套设在第一水蒸气喷管的外侧,并与燃烧室连接,用于在预热阶段向燃烧室喷射一次风;二次风喷管与燃烧室连接,用于在无焰燃烧阶段向燃烧室喷射二次风;燃烧室用于为氢气进行富氧燃烧提供空间。本发明利用水蒸气将一次风与氢气分隔,能够有效降低氢气的燃烧速率,从而提高燃烧器的安全性,待达到预设温度后,切换为二次风喷管提供氧气以此实现氢气的无焰燃烧,能够保证燃烧器内的温度分布较为均匀,从而避免了氢气燃烧产生的安全隐患。
-
公开(公告)号:CN110260321A
公开(公告)日:2019-09-20
申请号:CN201910581635.8
申请日:2019-06-30
Applicant: 华中科技大学
Abstract: 本发明属于无焰燃烧领域,并具体公开了一种实现超低NOx排放的旋转式无焰燃烧器。该燃烧器的中心燃气喷管用于输送和喷射燃气;空气进口直管用于向空气通道输送空气;空气通道的壁面对称设置有空气调节喷口,利用其喷出的空气产生反作用力,带动旋转式无焰燃烧器绕中心轴线旋转;通过第一截流圆环的移动控制空气直喷喷管的开闭,从而在无焰燃烧阶段喷射空气;通过第二截流圆环的移动控制空气旋流喷管的开闭,从而在预热燃烧阶段喷射空气。本发明利用空气调节喷口产生的反作用力带动空气和燃气绕中心轴线旋转,并使得燃气与卷吸的高温烟气在整个炉膛内进行混合,从而扩大反应区域并获得更加均匀的炉内温度分布,进而实现超低NOx排放。
-
-
-
-
-
-
-
-
-