-
公开(公告)号:CN114461908B
公开(公告)日:2024-06-21
申请号:CN202210099175.7
申请日:2022-01-27
Applicant: 华中师范大学
IPC: G06F16/9535 , G06Q50/20 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于异质交互行为的数字教育资源匹配方法及系统。该方法包括步骤:获取数字教育资源数据,数字教育资源数据包含学习者对资源的偏好数据、资源属性数据、学习者对资源的评论数据,每个学习者有唯一的编号;根据偏好数据、资源属性数据构建异质图,对异质图进行特征提取获得每个资源的异质流特征向量,根据评论数据获取每个资源的文本特征向量;将同一个资源的异质流特征向量、文本特征向量进行拼接获得每个资源的特征向量;将待匹配的目标学习者编号及每个资源的特征向量输入到训练后的推荐模型中,输出被推荐的数字教育资源。本发明可以提升数字教育资源匹配的准确度,从而更好地提供个性化学习服务。
-
公开(公告)号:CN114840679B
公开(公告)日:2024-07-26
申请号:CN202210087035.8
申请日:2022-01-25
Applicant: 华中师范大学
IPC: G06F16/36 , G06N3/0464 , G06N3/0455 , G06N3/08 , G06N5/02 , G06N5/04 , G10L15/26
Abstract: 本发明公开了一种基于乐理知识图谱推理的机器人智能导学方法及应用。该方法包括:采集乐理学习者提问的语音信号并转换为文本数据;获取文本数据中的实体嵌入表示hi和关系嵌入表示si;将hi、si与乐理知识图谱的每个实体eu对应的特征向量tu构成候选三元组(hi,si,tu);将候选三元组输入到知识图谱推理模块,获得所有候选三元组的能量值,将能量值最优的候选三元组中的tu对应的eu输出。本发明通过解析问句的实体及其关系,并挖掘乐理知识图谱中实体和关系的深度语义交互,可以提高智能导学的精确性和扩展性。
-
公开(公告)号:CN114840679A
公开(公告)日:2022-08-02
申请号:CN202210087035.8
申请日:2022-01-25
Applicant: 华中师范大学
Abstract: 本发明公开了一种基于乐理知识图谱推理的机器人智能导学方法及应用。该方法包括:采集乐理学习者提问的语音信号并转换为文本数据;获取文本数据中的实体嵌入表示hi和关系嵌入表示si;将hi、si与乐理知识图谱的每个实体eu对应的特征向量tu构成候选三元组(hi,si,tu);将候选三元组输入到知识图谱推理模块,获得所有候选三元组的能量值,将能量值最优的候选三元组中的tu对应的eu输出。本发明通过解析问句的实体及其关系,并挖掘乐理知识图谱中实体和关系的深度语义交互,可以提高智能导学的精确性和扩展性。
-
公开(公告)号:CN114461908A
公开(公告)日:2022-05-10
申请号:CN202210099175.7
申请日:2022-01-27
Applicant: 华中师范大学
IPC: G06F16/9535 , G06Q50/20 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于异质交互行为的数字教育资源匹配方法及系统。该方法包括步骤:获取数字教育资源数据,数字教育资源数据包含学习者对资源的偏好数据、资源属性数据、学习者对资源的评论数据,每个学习者有唯一的编号;根据偏好数据、资源属性数据构建异质图,对异质图进行特征提取获得每个资源的异质流特征向量,根据评论数据获取每个资源的文本特征向量;将同一个资源的异质流特征向量、文本特征向量进行拼接获得每个资源的特征向量;将待匹配的目标学习者编号及每个资源的特征向量输入到训练后的推荐模型中,输出被推荐的数字教育资源。本发明可以提升数字教育资源匹配的准确度,从而更好地提供个性化学习服务。
-
-
-