一种基于跨模态表征学习的学习状态检测方法

    公开(公告)号:CN119169501A

    公开(公告)日:2024-12-20

    申请号:CN202411196553.9

    申请日:2024-08-29

    Abstract: 本申请实施例公开了一种基于跨模态表征学习的学习状态检测方法,涉及教学信息化技术领域,该方法包括:获取RGB摄像头采集的第一视频信息以及动态视觉摄像头采集的第二视频信息,分别处理得到第一图像序列和第二图像序列,将第一图像序列和第二图像序列输入训练好的学习状态检测网络模型中,分别识别得到目标学习小组中每个学习者的面部表情识别结果和学习行为识别结果,确定目标学习小组中每个学习者的对应时刻的学习状态检测结果。采用本申请提供的方法,以每个学习者的面部情感识别结果和学习行为识别结果为基础估计得到学习小组的整体学习,能够对学习者的集体学习效果进行精准评估,有利于教师实时了解每个学习小组的实时学习状态。

    一种基于对偶路径矩阵分解的知识追踪方法

    公开(公告)号:CN119066450A

    公开(公告)日:2024-12-03

    申请号:CN202411191786.X

    申请日:2024-08-28

    Abstract: 本申请实施例公开了一种基于对偶路径矩阵分解的知识追踪方法,涉及知识追踪技术领域,所述方法包括:获取每个学生的学习记录数据,输入到训练好的知识追踪模型中进行特征提取,输出学习行为数据;将学习行为数据以及学习记录数据输入聚类模型中进行聚类分析,根据聚类结果输出每个聚类中心对应的知识追踪结果标签;分别对知识追踪结果标签对应的学习记录数据进行分析,输出学习数据分析结果,反馈学习指导信息至对应的学生。本申请提供的方法有利于教师更明确的了解每个学生的学习状态,并根据学生的实际学习状态对教学方案作出调整,也可以提示每个学习者了解自身学习的不足之处,使得学习者可以根据实际学习情况更好的规划学习计划。

Patent Agency Ranking