基于图神经网络的以太坊网络异常检测方法、系统和存储介质

    公开(公告)号:CN115378629B

    公开(公告)日:2024-08-27

    申请号:CN202210520557.2

    申请日:2022-05-13

    IPC分类号: H04L9/40

    摘要: 本发明提供一种基于图神经网络的以太坊网络异常检测方法、系统和存储介质,该方法包括以下步骤:基于收集的以太坊交易数据构建训练用的有向交易图;基于随机游走算法对构建的交易图中的节点进行有偏采样,获得第一节点序列;基于随机游走进行多尺度特征提取来生成多尺度序列组;将生成的多尺度序列组输入Skip‑gram模型将节点映射到向量空间,得到各个节点在向量空间的嵌入表示;基于各个节点在向量空间的嵌入表示利用分类算法对正常节点地址和异常节点地址进行分类,实现对检测模型的训练;利用预训练的检测模型对实际以太坊交易网络进行检测,获得检测结果。本发明的基于图神经网络的以太坊网络异常检测方法更具有针对性、准确性和有效性。

    基于图神经网络的以太坊网络异常检测方法、系统和存储介质

    公开(公告)号:CN115378629A

    公开(公告)日:2022-11-22

    申请号:CN202210520557.2

    申请日:2022-05-13

    IPC分类号: H04L9/40

    摘要: 本发明提供一种基于图神经网络的以太坊网络异常检测方法、系统和存储介质,该方法包括以下步骤:基于收集的以太坊交易数据构建训练用的有向交易图;基于随机游走算法对构建的交易图中的节点进行有偏采样,获得第一节点序列;基于随机游走进行多尺度特征提取来生成多尺度序列组;将生成的多尺度序列组输入Skip‑gram模型将节点映射到向量空间,得到各个节点在向量空间的嵌入表示;基于各个节点在向量空间的嵌入表示利用分类算法对正常节点地址和异常节点地址进行分类,实现对检测模型的训练;利用预训练的检测模型对实际以太坊交易网络进行检测,获得检测结果。本发明的基于图神经网络的以太坊网络异常检测方法更具有针对性、准确性和有效性。