一种基于时间序列平稳性检验的异常体温序列筛选方法

    公开(公告)号:CN112057052B

    公开(公告)日:2022-02-15

    申请号:CN202010767411.9

    申请日:2020-08-03

    Abstract: 本发明提出一种基于时间序列平稳性检验的异常体温序列筛选方法,属于体温检测技术领域。包括:步骤一、生成初始体温时间序列;步骤二、对用户体温时间序列进行插值,补充缺失数据,形成完整的体温时间序列数据集;步骤三、对用户的体温时间序列的平稳性利用扩展迪基‑福勒方法进行检验,对检验结果为不平稳的体温时间序列,进一步做阶数为周期长度的差分,周期长度是指每日固定时间段长度,然后对差分所得体温序列再用扩展迪基‑福勒方法进行平稳性检验;步骤四、计算用户体温时间序列的特征评分,进行异常体温判定。本发明使用平稳性检验方法初步筛选体温时间序列,可以增加异常体温筛选工作的效率,避免大规模的计算工作。

    一种体温序列职业画像新方法

    公开(公告)号:CN112086202A

    公开(公告)日:2020-12-15

    申请号:CN202010768565.X

    申请日:2020-08-03

    Abstract: 本发明公开了一种体温序列职业画像新方法,属于机器学习领域。首先针对某个目标用户,从体温数据库中提取固定时间段内的体温序列值生成该用户的体温时间序列数据集。如果该体温时间序列数据集有缺失,则对缺失的体温序列值进行补足,生成完整的体温时间序列数据。然后使用完整的体温时间序列数据生成目标用户的五维高层次特征,并将五维高层次特征组成K‑means聚类算法的输入向量,利用K‑means聚类算法得到不同职业的簇。最后对各个职业簇进行数据统计与分析,生成用户职业画像。本发明免去大量繁杂的人工操作,并且进一步挖掘了体温序列的深层次信息,更具表征性。

    一种体温序列职业画像方法

    公开(公告)号:CN112086202B

    公开(公告)日:2022-11-22

    申请号:CN202010768565.X

    申请日:2020-08-03

    Abstract: 本发明公开了一种体温序列职业画像新方法,属于机器学习领域。首先针对某个目标用户,从体温数据库中提取固定时间段内的体温序列值生成该用户的体温时间序列数据集。如果该体温时间序列数据集有缺失,则对缺失的体温序列值进行补足,生成完整的体温时间序列数据。然后使用完整的体温时间序列数据生成目标用户的五维高层次特征,并将五维高层次特征组成K‑means聚类算法的输入向量,利用K‑means聚类算法得到不同职业的簇。最后对各个职业簇进行数据统计与分析,生成用户职业画像。本发明免去大量繁杂的人工操作,并且进一步挖掘了体温序列的深层次信息,更具表征性。

    一种基于SVM的异常体温序列检测装置及方法

    公开(公告)号:CN112057053A

    公开(公告)日:2020-12-11

    申请号:CN202010768189.4

    申请日:2020-08-03

    Abstract: 本发明公开了一种基于SVM的异常体温序列检测装置及方法,属于温度检测技术领域。本发明装置包括:佩戴在人体的温度检测设备,与温度检测设备通过无线通信的智能设备,智能设备上安装有用户体温数据库、体温序列提取单元、温度特征提取单元、支持向量机模型单元以及预警输出单元;本发明方法包括:收集用户体温时间序列数据;并对其进行提取及插值得到完整的体温时间序列数据;对体温时间序列进行挖掘特征值,生成特征向量;将特征向量添加用户标签,训练支持向量机,保存训练好的分类模型;最后将待判断用户体温数据输入训练好的分类模型,输出待判断用户的分类结果。本发明解决了在实际体温监测中存在着体温数据缺失、数据精度不高等问题。

    一种基于时间序列平稳性检验的异常体温序列筛选方法

    公开(公告)号:CN112057052A

    公开(公告)日:2020-12-11

    申请号:CN202010767411.9

    申请日:2020-08-03

    Abstract: 本发明提出一种基于时间序列平稳性检验的异常体温序列筛选方法,属于体温检测技术领域。包括:步骤一、生成初始体温时间序列;步骤二、对用户体温时间序列进行插值,补充缺失数据,形成完整的体温时间序列数据集;步骤三、对用户的体温时间序列的平稳性利用扩展迪基‑福勒方法进行检验,对检验结果为不平稳的体温时间序列,进一步做阶数为周期长度的差分,周期长度是指每日固定时间段长度,然后对差分所得体温序列再用扩展迪基‑福勒方法进行平稳性检验;步骤四、计算用户体温时间序列的特征评分,进行异常体温判定。本发明使用平稳性检验方法初步筛选体温时间序列,可以增加异常体温筛选工作的效率,避免大规模的计算工作。

Patent Agency Ranking