-
公开(公告)号:CN116384504A
公开(公告)日:2023-07-04
申请号:CN202310163408.X
申请日:2023-02-24
Applicant: 北京邮电大学
IPC: G06N20/00
Abstract: 本发明提供一种联邦迁移学习系统。包括:云服务器、边缘组件和用户组件,边缘组件包括多个边缘服务器,用户组件包括多个用户终端;云服务器用于基于各边缘服务器发出的特征信息将多个边缘服务器划分为多个边缘协作域,并确定域首服务器和域成员服务器;边缘服务器用于选择目标用户终端并发送全局模型的参数及训练信息,还用于获取训练参数并进行边缘聚合以获得边缘模型;域首服务器用于将同一个边缘协作域中的所有边缘模型进行全局聚合以获得域模型,域首服务器还用于当域模型的准确度达到预设阈值时,将域模型发送至云服务器;目标用户终端用于训练本地模型,以获得训练参数。该系统能够满足用户个性化需求,改善模型的收敛性。
-
公开(公告)号:CN104752809A
公开(公告)日:2015-07-01
申请号:CN201510059900.8
申请日:2015-02-05
Applicant: 北京邮电大学
Abstract: 本发明公开了一种射频识别标签天线,包括:相互独立的馈电单元和辐射单元;其中,在使用射频识别标签天线时,将馈电单元粘贴在辐射单元上。本发明采用分离式的馈电单元和辐射单元,这样,辐射单元可以反复使用、可以匹配多种RFID芯片(馈电单元),从而使本发明的射频识别标签天线经济环保。
-
公开(公告)号:CN118246520A
公开(公告)日:2024-06-25
申请号:CN202410223337.2
申请日:2024-02-28
Applicant: 北京邮电大学 , 国网江苏省电力有限公司信息通信分公司 , 国网江苏省电力有限公司 , 国网电力科学研究院有限公司 , 国家电网有限公司
IPC: G06N3/098 , G06N3/0464 , G06N3/049 , G06F18/214 , G06F18/22 , G06F18/23 , H02J3/00
Abstract: 本发明提供一种面向电力负荷预测的联邦学习方法、装置、设备及介质,涉及人工智能领域。该方法包括:基于用电模式将多个电站客户端划分成多个协作训练域;基于时域卷积网络构建负荷预测模型并下发到各协作训练域的电站客户端;在每个电站客户端分别使用各自的训练样本对负荷预测模型进行训练得到个性化层参数和通用层参数;对属于相同协作训练域的各电站客户端对应的个性化层参数进行边缘聚合以更新个性化层;先对属于相同协作训练域的各电站客户端对应的通用层参数进行边缘聚合,再对各个协作训练域边缘聚合后的通用层参数进行域间全局聚合以更新通用层。本发明的方案能够减少时延,模型能够更快收敛,提高联邦学习在资源异构场景下的性能。
-
公开(公告)号:CN117290720A
公开(公告)日:2023-12-26
申请号:CN202311022799.X
申请日:2023-08-14
Applicant: 国网江苏省电力有限公司信息通信分公司 , 北京邮电大学 , 国网江苏省电力有限公司 , 国家电网有限公司
IPC: G06F18/214 , G06Q50/06 , G06N20/00
Abstract: 本发明提供一种面向电力终端的个性化联邦多任务学习方法及相关设备,包括:根据K个相似的机器学习任务,将全局多任务模型划分为一个用于提取共同数据特征的基础模块和K个用于输出预测结果的特定任务模块;对于每个机器学习任务建立对应的逻辑簇,用于聚合和存储全局多任务模型,并将全局多任务模型和每个机器学习任务下发至所有电力终端进行联邦训练,以获得特定任务模块的更新梯度值;将对应的更新梯度值上传至边缘服务器,调度已逻辑簇执行全局聚合操作,以获得全局模块;将全局模块与基础模块进行组合,以获得更新的全局多任务模型。本发明提出一种基于逻辑簇的个性化联邦多任务学习框架,解决了电力物联网场景中多服务下的协作问题。
-
公开(公告)号:CN116405977A
公开(公告)日:2023-07-07
申请号:CN202211538198.X
申请日:2022-12-01
Applicant: 北京邮电大学 , 国网河南省电力公司信息通信公司 , 国家电网有限公司 , 国家电投集团河南电力有限公司
Abstract: 本发明提供一种移动终端资源分配方法及装置,该移动终端资源分配方法包括:向第一终端发送第一参数;接收第一终端发送的第二参数和第三参数;基于联邦学习训练模型,对第二参数和第三参数进行聚合处理,得到全局参数;基于全局参数,更新联邦学习训练模型。本发明所述方法将联邦学习训练模型的第一参数下发至第一终端和第二终端进行协作训练,并对由协作训练得到第二参数和第三参数进行聚合处理以获取新的全局参数,实现了移动终端对资源的充分利用和车辆训练的高效协同,从而优化了车联网资源的分配。
-
公开(公告)号:CN117950861A
公开(公告)日:2024-04-30
申请号:CN202410049550.6
申请日:2024-01-12
Applicant: 北京邮电大学 , 联通时科(北京)信息技术有限公司
Abstract: 本发明提供一种联邦机器学习系统资源分配处理方法及装置。该方法包括:确定联邦机器学习系统中智能终端在当前联邦学习回合的总时延得分和本地模型参数的质量,基于与智能终端对应的声誉评估模型进行分析,获得智能终端在当前联邦学习回合的当前声誉值;获得预设的智能终端集合中每个智能终端的资源属性信息,将资源属性信息输入至预设的智能终端选择和延迟准入模型,获得选择调用的当前联邦学习回合中的目标智能终端和资源分配策略;基于资源分配策略对目标智能终端分配相应的目标新鲜度的联邦学习的全局模型参数和相应的资源。本发明提供的方法,能够有效提高联邦机器学习系统资源分配效率和准确率,使每个回合选择的智能终端保持稳定。
-
-
-
-
-