一种基于自适应单峰立体匹配成本滤波的双目深度学习方法

    公开(公告)号:CN111709977A

    公开(公告)日:2020-09-25

    申请号:CN202010185728.1

    申请日:2020-03-17

    摘要: 本申请公开了一种基于自适应单峰立体匹配成本滤波的双目深度学习方法,其特征在于:对网络预测的匹配代价直接施加以真实视差为中心的单峰分布监督,实现自适应的匹配成本滤波,包括以下步骤:1)构建数据集,数据集包括左图像和右图像,左图像和右图像作为一个立体图像对;2)以PSMNet作为立体匹配模型基础网络,将立体图像对输入PSMNet立体匹配模型基础网络,PSMNet立体匹配模型基础网络输出三个经过堆积的沙漏3D卷积神经网络聚合后的匹配代价体(Cost Volume);3)对于每个匹配代价体(Cost Volume),分别用一个自信度评估网络(Confidence Estimation Network)估计自信度图并用于调节真实的匹配代价体(Ground Truth Cost Volume),以生成像素级别的单峰分布(Unimodal Distribution)作为网络训练标记。本发明的优点在于它能克服现有技术的弊端,结构设计合理新颖。