-
公开(公告)号:CN108681617B
公开(公告)日:2022-07-29
申请号:CN201810271672.4
申请日:2018-03-29
Applicant: 北京空间飞行器总体设计部
IPC: G06F30/15 , G06F30/20 , G06F111/04
Abstract: 本发明公开了一种航天器多星敏感器布局优化设计方法,(1)确定由地球公转、自转引起的太阳光直射点赤纬、赤经的变化范围,定义星敏光轴矢量,建立太阳光约束表达式;(2)解析卫星椭圆轨道与地球相对位置关系,确定卫星在运行至近地点时星敏感器光轴方向与星地连线之间的夹角,建立地气光约束表达式;(3)用圆锥体集合描述星敏感器遮光罩内部以星敏感器为起点的射线,将卫星中立方体部件及圆柱体部件用集合形式描述,通过解析表达式描述星敏感器遮光罩圆锥范围内的射线不被遮挡;(4)构造多星敏感器布局的优化问题指标函数,获得多星敏感器最优指向,确定多星敏感器最优布局。
-
公开(公告)号:CN108910090A
公开(公告)日:2018-11-30
申请号:CN201810273730.7
申请日:2018-03-29
Applicant: 北京空间飞行器总体设计部
Abstract: 本发明提供了一种星敏感器和热控装置一体化安装支架,包括星敏感器支架、辐射板支架、角盒、辐射板遮阳帘撑杆,外围设备包括星敏感器、辐射板、热管、遮阳帘。本发明的支架能够实现星敏感器和其高精度热控装置(包括热管、辐射板等)的一体化安装,从而实现星敏感器能够脱离航天器结构舱板,独立安装在航天器舱外或者相机上,为实现星敏感器与相机一体化安装奠定了基础;同时,本发明的支架能够优化星敏热辐射器的外热流条件,以最小的代价实现星敏的高精度控温。
-
公开(公告)号:CN108910090B
公开(公告)日:2020-07-14
申请号:CN201810273730.7
申请日:2018-03-29
Applicant: 北京空间飞行器总体设计部
Abstract: 本发明提供了一种星敏感器和热控装置一体化安装支架,包括星敏感器支架、辐射板支架、角盒、辐射板遮阳帘撑杆,外围设备包括星敏感器、辐射板、热管、遮阳帘。本发明的支架能够实现星敏感器和其高精度热控装置(包括热管、辐射板等)的一体化安装,从而实现星敏感器能够脱离航天器结构舱板,独立安装在航天器舱外或者相机上,为实现星敏感器与相机一体化安装奠定了基础;同时,本发明的支架能够优化星敏热辐射器的外热流条件,以最小的代价实现星敏的高精度控温。
-
公开(公告)号:CN108896188B
公开(公告)日:2020-07-14
申请号:CN201810573339.9
申请日:2018-06-06
Applicant: 北京空间飞行器总体设计部
IPC: G01J5/00
Abstract: 本发明公开了一种共口径高轨遥感卫星红外通道大气校正方法:(1)、构建高轨热红外分裂窗大气水汽反演模型,计算得到卫星成像时刻图像覆盖区域的大气柱水汽含量W;(2)、根据高轨遥感卫星可见‑近红外各通道在不同成像条件、大气条件下的大气校正系数,形成大气校正系数查找表;(3)、检索大气校正系数查找表,得到大气校正系数,并据此计算卫星可见‑近红外各通道地表反射率,完成可见‑近红外波段的大气校正;(4)、计算热红外吸收通道B11和透过通道B12大气透过率τ11和τ12;(5)、利用热红外分裂窗地表温度反演模型,完成地表温度反演,得到地表温度。该方法能够提升卫星图像质量和地表辐射量、反射量的遥感观测精度。
-
公开(公告)号:CN108896188A
公开(公告)日:2018-11-27
申请号:CN201810573339.9
申请日:2018-06-06
Applicant: 北京空间飞行器总体设计部
IPC: G01J5/00
Abstract: 本发明公开了一种共口径高轨遥感卫星红外通道大气校正方法:(1)、构建高轨热红外分裂窗大气水汽反演模型,计算得到卫星成像时刻图像覆盖区域的大气柱水汽含量W;(2)、根据高轨遥感卫星可见-近红外各通道在不同成像条件、大气条件下的大气校正系数,形成大气校正系数查找表;(3)、检索大气校正系数查找表,得到大气校正系数,并据此计算卫星可见-近红外各通道地表反射率,完成可见-近红外波段的大气校正;(4)、计算热红外吸收通道B11和透过通道B12大气透过率τ11和τ12;(5)、利用热红外分裂窗地表温度反演模型,完成地表温度反演,得到地表温度。该方法能够提升卫星图像质量和地表辐射量、反射量的遥感观测精度。
-
公开(公告)号:CN107680040A
公开(公告)日:2018-02-09
申请号:CN201710879520.8
申请日:2017-09-26
Applicant: 北京空间飞行器总体设计部
CPC classification number: G06T3/4053 , G06T3/0075 , G06T5/006 , G06T2207/20084
Abstract: 本发明公开了一种基于贝叶斯准则的多帧盲卷积超分辨重建方法及装置。其中,该方法包括以下步骤:通过同一场景序列图像的像质评价与帧选算法得到参考图像的感兴趣区域和辐射校正后的目标图像的匹配区域;辐射校正后的目标图像的匹配区域经过图像配准算法得到辐射度和精准的几何畸变参数;将精准的几何畸变参数通过多帧盲解卷积图像复原算法得到图像超分辨复原的点扩散函数;将辐射度和图像超分辨复原的点扩散函数通过最大后验超分辨率重建算法得到超分辨重建图像。本发明解决传统一般算法对点扩散函数、运动模糊以及对图像结构信息和稀疏性等考虑不足的问题,对系统点扩散函数和多帧图像配准参数进行自动预估,提高了的图像分辨率。
-
公开(公告)号:CN107757950B
公开(公告)日:2020-06-09
申请号:CN201710829212.4
申请日:2017-09-14
Applicant: 北京空间飞行器总体设计部
Inventor: 张立新 , 刘国青 , 白刚 , 阮剑华 , 李竞蔚 , 赵华 , 余快 , 赵煜 , 李果 , 杨文涛 , 王成伦 , 张胜 , 杨国巍 , 沈中 , 刘凤晶 , 李响 , 王丽俐
Abstract: 一种高轨光学遥感卫星结构,包括承力筒(1)、燃料箱(2)、氧箱(3)、卫星平台(8)、太阳翼(11)、载荷适配结构(14)、相机(15)等;氧箱(3)安装在承力筒(1)内;各燃料箱(2)分别通过位于燃料箱(2)两端的燃料箱支架(4)和燃料箱顶部拉板(5)安装在承力筒(1)两侧;承力筒(1)、燃料箱(2)、氧箱(3)、燃料箱支架(4)、燃料箱顶部拉板(5)安装在卫星平台(8)内;相机(15)通过载荷适配结构(14)安装在卫星平台(8)顶部;太阳翼(11)分别安装在卫星平台(8)两侧。本发明实现了卫星整体质心降低、载荷安装面环境条件改善,同时满足燃料箱、氧箱等控制推进设备安装要求。
-
公开(公告)号:CN108681617A
公开(公告)日:2018-10-19
申请号:CN201810271672.4
申请日:2018-03-29
Applicant: 北京空间飞行器总体设计部
IPC: G06F17/50
CPC classification number: G06F17/50
Abstract: 本发明公开了一种航天器多星敏感器布局优化设计方法,(1)确定由地球公转、自转引起的太阳光直射点赤纬、赤经的变化范围,定义星敏光轴矢量,建立太阳光约束表达式;(2)解析卫星椭圆轨道与地球相对位置关系,确定卫星在运行至近地点时星敏感器光轴方向与星地连线之间的夹角,建立地气光约束表达式;(3)用圆锥体集合描述星敏感器遮光罩内部以星敏感器为起点的射线,将卫星中立方体部件及圆柱体部件用集合形式描述,通过解析表达式描述星敏感器遮光罩圆锥范围内的射线不被遮挡;(4)构造多星敏感器布局的优化问题指标函数,获得多星敏感器最优指向,确定多星敏感器最优布局。
-
公开(公告)号:CN107757950A
公开(公告)日:2018-03-06
申请号:CN201710829212.4
申请日:2017-09-14
Applicant: 北京空间飞行器总体设计部
Inventor: 张立新 , 刘国青 , 白刚 , 阮剑华 , 李竞蔚 , 赵华 , 余快 , 赵煜 , 李果 , 杨文涛 , 王成伦 , 张胜 , 杨国巍 , 沈中 , 刘凤晶 , 李响 , 王丽俐
Abstract: 一种高轨光学遥感卫星结构,包括承力筒(1)、燃料箱(2)、氧箱(3)、卫星平台(8)、太阳翼(11)、载荷适配结构(14)、相机(15)等;氧箱(3)安装在承力筒(1)内;各燃料箱(2)分别通过位于燃料箱(2)两端的燃料箱支架(4)和燃料箱顶部拉板(5)安装在承力筒(1)两侧;承力筒(1)、燃料箱(2)、氧箱(3)、燃料箱支架(4)、燃料箱顶部拉板(5)安装在卫星平台(8)内;相机(15)通过载荷适配结构(14)安装在卫星平台(8)顶部;太阳翼(11)分别安装在卫星平台(8)两侧。本发明实现了卫星整体质心降低、载荷安装面环境条件改善,同时满足燃料箱、氧箱等控制推进设备安装要求。
-
公开(公告)号:CN107610164A
公开(公告)日:2018-01-19
申请号:CN201710812557.9
申请日:2017-09-11
Applicant: 北京空间飞行器总体设计部
IPC: G06T7/33
Abstract: 本发明针对高分四号多谱段影像间自动配准,提出了一种鲁棒性、适应性更强的基于多特征混合的高分四号影像配准方法,该方法包括如下步骤:1)先对基准影像和配准影像进行必要的预处理和图像增强处理;2)对影像重叠区域按照地形数据高程特点进行区域分块处理;3)对两幅影像进行两种特征点提取和匹配,形成初始混合点对集;4)通过设定特征点之间的距离阈值来对初始混合点对集进行优化;5)根据配准精度要求,确定最终匹配点对集;6)将最终匹配点对分为控制点和检查点,再根据控制点对建立两影像配准的仿射变换模型,确定仿射变换参数;7)对配准影像进行图像重采样,输出配准结果,并进行配准精度评估。
-
-
-
-
-
-
-
-
-