-
公开(公告)号:CN114820389B
公开(公告)日:2022-09-23
申请号:CN202210714947.3
申请日:2022-06-23
IPC: G06T5/00 , G06V10/774 , G06V10/82 , G06N3/08
Abstract: 本发明提供一种基于无监督解耦表征的人脸图像去模糊方法,属于计算机视觉中的低质量图像复原技术领域。所述方法包括:获取由清晰图像及模糊图像构成的训练集;其中,所述图像为人脸图像;构建基于生成对抗网络的去模糊生成网络,确定其总的目标函数;其中,通过所述去模糊生成网络解耦语义内容信息和域内特性,所述去模糊生成网络包括:内容域编码器、特征域编码器、特征域生成器、特征域鉴别器;利用得到的训练集和总的目标函数,训练所述去模糊生成网络;将待处理的模糊图像作为输入,利用训练好的所述去模糊生成网络生成清晰的人脸图像。采用本发明,能够解决其他无监督方法在训练过程中出现的域转移和解耦不一致的问题。
-
公开(公告)号:CN114821128B
公开(公告)日:2022-09-09
申请号:CN202210720448.5
申请日:2022-06-24
Abstract: 本发明公开了一种尺度自适应的模板匹配方法,包括:获取不同角度的同一场景的两幅图像,在其中一幅中手工框取感兴趣图像块作为模板图像,另一幅作为搜索图像;将模板图像和搜索图像输入特征提取网络,获取对应的特征图FT和FIS;计算归一化后的FT和FIS各像素之间的相似性,获取相似性度量图;产生自适应多尺度候选框;生成均值滤波后的相似性度量图;在搜索图像中选取出候选图像块;获取任一候选图像块和模板的特征描述;计算模板的特征描述符与任一候选图像块的特征描述符的相似性;将相似性最大的特征描述符所对应的候选图像块作为模板图像最终的匹配结果。本发明可自适应产生目标框,且适用于视角变化较大的立体结构的图像匹配问题。
-
公开(公告)号:CN114821128A
公开(公告)日:2022-07-29
申请号:CN202210720448.5
申请日:2022-06-24
Abstract: 本发明公开了一种尺度自适应的模板匹配方法,包括:获取不同角度的同一场景的两幅图像,在其中一幅中手工框取感兴趣图像块作为模板图像,另一幅作为搜索图像;将模板图像和搜索图像输入特征提取网络,获取对应的特征图FT和FIS;计算归一化后的FT和FIS各像素之间的相似性,获取相似性度量图;产生自适应多尺度候选框;生成均值滤波后的相似性度量图;在搜索图像中选取出候选图像块;获取任一候选图像块和模板的特征描述;计算模板的特征描述符与任一候选图像块的特征描述符的相似性;将相似性最大的特征描述符所对应的候选图像块作为模板图像最终的匹配结果。本发明可自适应产生目标框,且适用于视角变化较大的立体结构的图像匹配问题。
-
公开(公告)号:CN114820389A
公开(公告)日:2022-07-29
申请号:CN202210714947.3
申请日:2022-06-23
IPC: G06T5/00 , G06V10/774 , G06V10/82 , G06N3/08
Abstract: 本发明提供一种基于无监督解耦表征的人脸图像去模糊方法,属于计算机视觉中的低质量图像复原技术领域。所述方法包括:获取由清晰图像及模糊图像构成的训练集;其中,所述图像为人脸图像;构建基于生成对抗网络的去模糊生成网络,确定其总的目标函数;其中,通过所述去模糊生成网络解耦语义内容信息和域内特性,所述去模糊生成网络包括:内容域编码器、特征域编码器、特征域生成器、特征域鉴别器;利用得到的训练集和总的目标函数,训练所述去模糊生成网络;将待处理的模糊图像作为输入,利用训练好的所述去模糊生成网络生成清晰的人脸图像。采用本发明,能够解决其他无监督方法在训练过程中出现的域转移和解耦不一致的问题。
-
公开(公告)号:CN114663509B
公开(公告)日:2022-09-27
申请号:CN202210290488.0
申请日:2022-03-23
Applicant: 北京科技大学 , 北京科技大学顺德研究生院
Abstract: 本发明提供一种关键点热力图引导的自监督单目视觉里程计方法,属于计算机视觉领域。所述方法包括:构建位姿估计网络与深度估计网络;将视频图像序列输入位姿估计网络与深度估计网络;提取视频图像序列中每帧图像的关键点并生成关键点热力图;将位姿估计网络输出的每对相邻帧图像之间的位姿相乘得到较长时段的位姿,并基于深度估计网络输出的深度图像以及生成的关键点热力图,计算视频图像序列位姿一致性约束的光度误差损失函数;基于得到的光度误差损失函数,训练所述位姿估计网络与深度估计网络;利用训练好的位姿估计网络估计待估计位姿的视频图像序列中每帧图像对应的相机位姿。采用本发明,能够提高相机位姿估计的精度。
-
公开(公告)号:CN114663509A
公开(公告)日:2022-06-24
申请号:CN202210290488.0
申请日:2022-03-23
Applicant: 北京科技大学 , 北京科技大学顺德研究生院
Abstract: 本发明提供一种关键点热力图引导的自监督单目视觉里程计方法,属于计算机视觉领域。所述方法包括:构建位姿估计网络与深度估计网络;将视频图像序列输入位姿估计网络与深度估计网络;提取视频图像序列中每帧图像的关键点并生成关键点热力图;将位姿估计网络输出的每对相邻帧图像之间的位姿相乘得到较长时段的位姿,并基于深度估计网络输出的深度图像以及生成的关键点热力图,计算视频图像序列位姿一致性约束的光度误差损失函数;基于得到的光度误差损失函数,训练所述位姿估计网络与深度估计网络;利用训练好的位姿估计网络估计待估计位姿的视频图像序列中每帧图像对应的相机位姿。采用本发明,能够提高相机位姿估计的精度。
-
公开(公告)号:CN115631319B
公开(公告)日:2023-06-23
申请号:CN202211361582.7
申请日:2022-11-02
Applicant: 北京科技大学 , 北京科技大学顺德创新学院
Abstract: 本发明提供一种基于交叉注意力网络的回环检测方法,属于计算机视觉技术领域。所述方法包括:对激光雷达原始三维点云数据进行预处理,获得对应的球面投影图,即训练帧;构建基于自注意力机制和交叉注意力机制的重叠度估计网络;利用得到的训练帧,训练所述重叠度估计网络;利用训练好的重叠度估计网络估计每对扫描对之间的重叠度,扫描对为两帧激光雷达的球面投影图,选取重叠度估计值高于阈值的扫描对作为回环检测候选对象,对于当前帧,选择重叠度估计值最大的候选者作为回环匹配帧,且判定该回环匹配帧位置为回环检测结果。采用本发明,能够提高回环检测或地点识别中的准确率和召回率。
-
公开(公告)号:CN115631319A
公开(公告)日:2023-01-20
申请号:CN202211361582.7
申请日:2022-11-02
Applicant: 北京科技大学 , 北京科技大学顺德创新学院
Abstract: 本发明提供一种基于交叉注意力网络的回环检测方法,属于计算机视觉技术领域。所述方法包括:对激光雷达原始三维点云数据进行预处理,获得对应的球面投影图,即训练帧;构建基于自注意力机制和交叉注意力机制的重叠度估计网络;利用得到的训练帧,训练所述重叠度估计网络;利用训练好的重叠度估计网络估计每对扫描对之间的重叠度,扫描对为两帧激光雷达的球面投影图,选取重叠度估计值高于阈值的扫描对作为回环检测候选对象,对于当前帧,选择重叠度估计值最大的候选者作为回环匹配帧,且判定该回环匹配帧位置为回环检测结果。采用本发明,能够提高回环检测或地点识别中的准确率和召回率。
-
公开(公告)号:CN114663496A
公开(公告)日:2022-06-24
申请号:CN202210290482.3
申请日:2022-03-23
Applicant: 北京科技大学 , 北京科技大学顺德研究生院
Abstract: 本发明提供一种基于卡尔曼位姿估计网络的单目视觉里程计方法,属于计算机视觉技术领域。所述方法包括:构建深度估计网络和基于卡尔曼滤波的位姿估计网络;根据位姿估计网络输出的每对相邻帧图像之间的位姿变换以及深度估计网络输出的输入帧的深度图像,计算视频图像序列基于运动加权的光度误差损失函数;在构建的位姿估计网络与深度估计网络中,引入变分自动编码器结构,计算变分自动编码器损失函数;基于得到的光度误差损失函数和变分自动编码器损失函数,采取针对帧缺失情况的训练策略训练位姿估计网络与深度估计网络;利用训练好的位姿估计网络估计每帧图像对应的相机位姿。采用本发明,能够提高相机位姿估计的精度并适应帧缺失的情况。
-
公开(公告)号:CN114663496B
公开(公告)日:2022-10-18
申请号:CN202210290482.3
申请日:2022-03-23
Applicant: 北京科技大学 , 北京科技大学顺德研究生院
Abstract: 本发明提供一种基于卡尔曼位姿估计网络的单目视觉里程计方法,属于计算机视觉技术领域。所述方法包括:构建深度估计网络和基于卡尔曼滤波的位姿估计网络;根据位姿估计网络输出的每对相邻帧图像之间的位姿变换以及深度估计网络输出的输入帧的深度图像,计算视频图像序列基于运动加权的光度误差损失函数;在构建的位姿估计网络与深度估计网络中,引入变分自动编码器结构,计算变分自动编码器损失函数;基于得到的光度误差损失函数和变分自动编码器损失函数,采取针对帧缺失情况的训练策略训练位姿估计网络与深度估计网络;利用训练好的位姿估计网络估计每帧图像对应的相机位姿。采用本发明,能够提高相机位姿估计的精度并适应帧缺失的情况。
-
-
-
-
-
-
-
-
-