一种高纯一维SiC纳米材料的制备方法

    公开(公告)号:CN109437203B

    公开(公告)日:2020-07-31

    申请号:CN201811330531.1

    申请日:2018-11-09

    Abstract: 一种高纯的一维SiC纳米材料的制备方法。属于无机非金属材料领域。制备方法包括原料处理、原料混合、碳热还原和杂质处理四个步骤。其中碳热还原过程,在惰性气体保护下是将混好的原料于1500~1600℃烧结并保温4~6小时,再迅速降温至1250~1350℃保温2~4小时,随炉冷却得到白色棉花状样品。杂质处理是将得到的样品放入马弗炉内,空气气氛下升温至500~700℃保温2~4小时,得到浅绿色棉花状的高纯一维SiC纳米材料。本发明制备出的一维SiC纳米材料具有形貌均一、纯度高、长径比大、尺寸可控等结构优点;具有高强度、耐腐蚀、耐高温、出色的光致发光性能、吸波性能和介电性能等性能优势;且制备工艺简单、成本低、成品率高,可用于工业化生产。

    非晶前驱体诱导合成球状氮化硼(BN)纳米粉体的方法

    公开(公告)号:CN110386593A

    公开(公告)日:2019-10-29

    申请号:CN201910597510.4

    申请日:2019-07-04

    Abstract: 一种非晶前驱体诱导合成球状氮化硼(BN)纳米粉体的方法,属于无机非金属材料领域。制备方法包括原料混合、前驱体制备、高温热解、杂质处理四个步骤。将含B的原料和含N的原料进行混合,加入乙醇溶液中加热搅拌至水分完全蒸发;再将混合原料经马弗炉200~550℃保温120-360分钟,研磨得到粒度小于200目的前驱体粉末后高温热解;在氮气气氛下,将前驱体粉末升温至800~1450℃,并保温120~360分钟,随炉冷却得到白色粉末后在无水乙醇溶液中洗涤,并离心处理除去杂质,烘干得到球状BN纳米粉体。本发明制备出的球状BN纳米原料具有形貌均一、纯度高、尺寸可控等结构优点;具有耐磨、耐腐蚀、耐高温、出色的导热性能、绝缘性能等性能优势;且制备工艺简单、成本低、成品率高,可用于工业化生产。

    一种高纯一维SiC纳米材料的制备方法

    公开(公告)号:CN109437203A

    公开(公告)日:2019-03-08

    申请号:CN201811330531.1

    申请日:2018-11-09

    Abstract: 一种高纯的一维SiC纳米材料的制备方法。属于无机非金属材料领域。制备方法包括原料处理、原料混合、碳热还原和杂质处理四个步骤。其中碳热还原过程,在惰性气体保护下是将混好的原料于1500~1600℃烧结并保温4~6小时,再迅速降温至1250~1350℃保温2~4小时,随炉冷却得到白色棉花状样品。杂质处理是将得到的样品放入马弗炉内,空气气氛下升温至500~700℃保温2~4小时,得到浅绿色棉花状的高纯一维SiC纳米材料。本发明制备出的一维SiC纳米材料具有形貌均一、纯度高、长径比大、尺寸可控等结构优点;具有高强度、耐腐蚀、耐高温、出色的光致发光性能、吸波性能和介电性能等性能优势;且制备工艺简单、成本低、成品率高,可用于工业化生产。

    一种海胆状镍钴复合碱式碳酸盐的制备方法

    公开(公告)号:CN104817120A

    公开(公告)日:2015-08-05

    申请号:CN201510224985.0

    申请日:2015-05-05

    Abstract: 本发明公开了一种海胆状镍钴复合碱式碳酸盐及其制备方法,属于无机材料制备技术领域。其制备方法是向镍盐和钴盐的混合溶液中加入沉淀剂,通过控制反应温度得到化合物沉淀。经过过滤,水洗,干燥制得海胆状结构镍钴碱式碳酸盐微球。本发明的优点在于1)提供了一种海胆状结构镍钴碱式碳酸盐微球的快速制备方法。2)用本发明提供的方法制备的海胆状结构镍钴碱式碳酸盐微球,通过调节温度可以实现微球形貌的调控。3)用本发明提供的方法反应工艺简单、条件温和、流程短,适合工业化生产。

    一种高纯α-Si3N4纳米粉体的制备方法

    公开(公告)号:CN109485432A

    公开(公告)日:2019-03-19

    申请号:CN201811399979.9

    申请日:2018-11-22

    Abstract: 一种高纯α-Si3N4纳米粉体的制备方法,属于纳米材料领域。将含SiO2的原料磨细后加入盛有HNO3、CO(NH2)2、C6H12O6·H2O溶液的容器中,使Si:C摩尔比为2~4。将容器置于马弗炉中,加热到250~450℃,并保温15~45分钟,得到前驱体。将前驱体碾碎,置于刚玉坩埚中,放入气氛炉内,以600~2000ml/min的气体流量通入氮气,以3~5℃/min的升温速率升温至1450~1600℃保温0.5~3小时,再自然冷却。将烧结后的样品置于马弗炉中,在500~700℃空气气氛下保温1~4小时,得到高纯α-Si3N4纳米粉体。所制备的α-Si3N4纳米粉体纯度高、粒度均匀,未检测到β-Si3N4相及其他杂相,其晶粒呈絮状、片状等,氧含量约为1.93at%,粒度为50nm~700nm,比表面积约为4.8m2/g。该方法成本低、产品纯度高、工艺简单,适合工业化生产。

    一种高纯α-Si3N4纳米粉体的制备方法

    公开(公告)号:CN109485432B

    公开(公告)日:2021-01-26

    申请号:CN201811399979.9

    申请日:2018-11-22

    Abstract: 一种高纯α‑Si3N4纳米粉体的制备方法,属于纳米材料领域。将含SiO2的原料磨细后加入盛有HNO3、CO(NH2)2、C6H12O6·H2O溶液的容器中,使Si:C摩尔比为2~4。将容器置于马弗炉中,加热到250~450℃,并保温15~45分钟,得到前驱体。将前驱体碾碎,置于刚玉坩埚中,放入气氛炉内,以600~2000ml/min的气体流量通入氮气,以3~5℃/min的升温速率升温至1450~1600℃保温0.5~3小时,再自然冷却。将烧结后的样品置于马弗炉中,在500~700℃空气气氛下保温1~4小时,得到高纯α‑Si3N4纳米粉体。所制备的α‑Si3N4纳米粉体纯度高、粒度均匀,未检测到β‑Si3N4相及其他杂相,其晶粒呈絮状、片状等,氧含量约为1.93at%,粒度为50nm~700nm,比表面积约为4.8m2/g。该方法成本低、产品纯度高、工艺简单,适合工业化生产。

Patent Agency Ranking