-
公开(公告)号:CN110245693B
公开(公告)日:2023-04-07
申请号:CN201910459868.0
申请日:2019-05-30
Applicant: 北京理工大学
IPC: G06F18/2431 , G06F18/2411 , G06Q10/0639 , G06Q50/26
Abstract: 本发明公开了一种结合混合随机森林的关键信息基础设施资产识别方法,属于计算机与信息科学技术领域。该方法包括:对采集到的设施资产数据进行结构化处理并进行特征优化表达,得到扩展的特征向量;结合德尔菲专家咨询法和主成分分析法,进行资产设施的关键影响因素分析,提取关键特征向量;将多个随机森林判别模型与一个门控函数相结合,获得混合随机森林判决模型;基于构建的混合随机森林模型实现对流量是否为关键资产基础设施的识别。由于本发明提供的关键信息基础设施资产识别方法,在大数据下通过结合机器学习方法实现资产的特征构建和关键因素提取,通过分区构建各自的专家模型,提升识别的准确性和效率,并提高了模型的泛化能力和可扩展性。
-
公开(公告)号:CN110334904A
公开(公告)日:2019-10-15
申请号:CN201910459822.9
申请日:2019-05-30
Applicant: 北京理工大学
Abstract: 本发明涉及基于LightGBM的关键信息基础设施类型单位归属判定方法,属于网络空间安全与机器学习领域。主要为了解决传统的依赖人力对关键信息基础设施类型进行标注的效率低、可扩展性差的问题。本发明提出一种基于机器学习算法,结合多类型、多截面数据采集及特征表达的关键信息基础设施资产特征优化表达与多目标分类技术研究方法,在此基础上构建关键信息基础设施类型归属判别应用系统,根据设施资产数据判定其属于哪一类的关键信息基础设施(如政府机关、国防科工、广播电台、运营商等等),实现对关键信息基础设施类型归属的识别认定。实验结果表明,本发明提出的算法的准确率和查全率较好,与规则匹配方法相比,具有很好的判定效果。
-
公开(公告)号:CN110334904B
公开(公告)日:2023-03-03
申请号:CN201910459822.9
申请日:2019-05-30
Applicant: 北京理工大学
IPC: G06F16/84
Abstract: 本发明涉及基于LightGBM的关键信息基础设施类型单位归属判定方法,属于网络空间安全与机器学习领域。主要为了解决传统的依赖人力对关键信息基础设施类型进行标注的效率低、可扩展性差的问题。本发明提出一种基于机器学习算法,结合多类型、多截面数据采集及特征表达的关键信息基础设施资产特征优化表达与多目标分类技术研究方法,在此基础上构建关键信息基础设施类型归属判别应用系统,根据设施资产数据判定其属于哪一类的关键信息基础设施(如政府机关、国防科工、广播电台、运营商等等),实现对关键信息基础设施类型归属的识别认定。实验结果表明,本发明提出的算法的准确率和查全率较好,与规则匹配方法相比,具有很好的判定效果。
-
公开(公告)号:CN110245693A
公开(公告)日:2019-09-17
申请号:CN201910459868.0
申请日:2019-05-30
Applicant: 北京理工大学
Abstract: 本发明公开了一种结合混合随机森林的关键信息基础设施资产识别方法,属于计算机与信息科学技术领域。该方法包括:对采集到的设施资产数据进行结构化处理并进行特征优化表达,得到扩展的特征向量;结合德尔菲专家咨询法和主成分分析法,进行资产设施的关键影响因素分析,提取关键特征向量;将多个随机森林判别模型与一个门控函数相结合,获得混合随机森林判决模型;基于构建的混合随机森林模型实现对流量是否为关键资产基础设施的识别。由于本发明提供的关键信息基础设施资产识别方法,在大数据下通过结合机器学习方法实现资产的特征构建和关键因素提取,通过分区构建各自的专家模型,提升识别的准确性和效率,并提高了模型的泛化能力和可扩展性。
-
公开(公告)号:CN115130678A
公开(公告)日:2022-09-30
申请号:CN202210535456.2
申请日:2022-05-17
Applicant: 北京理工大学
Abstract: 本发明涉及引入互联网设备流量的迁移学习IoT设备分类方法,属于物联网安全与机器学习领域。本发明首先对数据包进行数据流层面的特征提取和表达,得到原始特征向量;然后针对原始特征向量进行特征构建,并使用过滤器进行特征选择;利用TrAdaboost算法在互联网流量(源域)和IoT流量(目标域)的联合域上构建多个决策树分类器;最后通过集成学习的Boosting结合策略将各决策树的分类结果进行结合,输出设备分类结果。针对新建的IoT网络中新型物联网设备繁多,有标注流量数据稀少,现有的机器学习分类模型分类效果差的问题,本发明有效学习了互联网设备分类的“先验知识”,并将其应用于IoT设备分类模型的构建,有效提高了分类模型的准确率。
-
公开(公告)号:CN112733448B
公开(公告)日:2023-03-03
申请号:CN202110019417.2
申请日:2021-01-07
Applicant: 北京理工大学 , 通号城市轨道交通技术有限公司
Abstract: 本发明涉及一种可用于实现列车自动驾驶系统参数自学习的双Q表联合代理的建立方法,属于自动驾驶与强化学习领域。主要用于节省现有自动驾驶系统中关键转换参数需要专家逐车调整所消耗的大量人工工作成本,同时实现转换参数随车辆性能变化实时适应。本发明首先建立可正确响应转换参数改变所引发运行效果变化的运行仿真环境;其次,基于Q‑Learning方法,以舒适度和停准率两个条件为训练目标,建立两个参数调整代理分别给出向好的参数调整动作;最后,建立联合策略,协调两个参数调整代理相互配合工作,实现对参数的优化。在某地铁线路实车上实验,结果表明,本发明能达到良好的参数自学习效果,实现了列车参数的自动优化。
-
公开(公告)号:CN112733448A
公开(公告)日:2021-04-30
申请号:CN202110019417.2
申请日:2021-01-07
Applicant: 北京理工大学 , 通号城市轨道交通技术有限公司
Abstract: 本发明涉及一种可用于实现列车自动驾驶系统参数自学习的双Q表联合代理的建立方法,属于自动驾驶与强化学习领域。主要用于节省现有自动驾驶系统中关键转换参数需要专家逐车调整所消耗的大量人工工作成本,同时实现转换参数随车辆性能变化实时适应。本发明首先建立可正确响应转换参数改变所引发运行效果变化的运行仿真环境;其次,基于Q‑Learning方法,以舒适度和停准率两个条件为训练目标,建立两个参数调整代理分别给出向好的参数调整动作;最后,建立联合策略,协调两个参数调整代理相互配合工作,实现对参数的优化。在某地铁线路实车上实验,结果表明,本发明能达到良好的参数自学习效果,实现了列车参数的自动优化。
-
-
-
-
-
-