基于强化混合专家模型的跨项目软件缺陷预测方法

    公开(公告)号:CN112199287B

    公开(公告)日:2022-03-29

    申请号:CN202011100263.1

    申请日:2020-10-13

    Abstract: 本发明涉及一种基于强化混合专家模型的软件缺陷预测方法,属于计算机与信息科学技术领域。主要解决跨项目软件缺陷预测中混合专家模型未能学习跨项目软件的全局信息造成软件缺陷预测性能下降的问题。本发明首先全局训练随机森林,由森林中的树经过挑选与强化构成专家,然后经过改进的EM算法计算每个样本的后验概率并迭代执行专家模型的挑选与强化过程,最后根据迭代重构后的子簇训练门控网络,组合优化好的专家模型构成完整的强化混合专家模型,预测本项目待预测软件模块的缺陷。结果表明本发明能达到较好的分类效果,进一步提升了跨项目软件缺陷预测的准确率。

    基于强化混合专家模型的跨项目软件缺陷预测方法

    公开(公告)号:CN112199287A

    公开(公告)日:2021-01-08

    申请号:CN202011100263.1

    申请日:2020-10-13

    Abstract: 本发明涉及一种基于强化混合专家模型的软件缺陷预测方法,属于计算机与信息科学技术领域。主要解决跨项目软件缺陷预测中混合专家模型未能学习跨项目软件的全局信息造成软件缺陷预测性能下降的问题。本发明首先全局训练随机森林,由森林中的树经过挑选与强化构成专家,然后经过改进的EM算法计算每个样本的后验概率并迭代执行专家模型的挑选与强化过程,最后根据迭代重构后的子簇训练门控网络,组合优化好的专家模型构成完整的强化混合专家模型,预测本项目待预测软件模块的缺陷。结果表明本发明能达到较好的分类效果,进一步提升了跨项目软件缺陷预测的准确率。

Patent Agency Ranking