-
公开(公告)号:CN102114917A
公开(公告)日:2011-07-06
申请号:CN200910216909.X
申请日:2009-12-31
Applicant: 北京控制工程研究所
IPC: B64G1/24
Abstract: 本发明提供一种提高磁力矩器控制精度的处理方法,其卫星在轨正常运行时采用脉宽调制的方式进行磁控;具体步骤为:(a)计算得出磁力矩器输出磁矩Mi(i=x,y,z);(b)然后计算得出磁力矩器工作脉宽Wmi(i=x,y,z);(c)计算获得补偿后的分别安装于卫星三个轴上的磁力矩器工作脉宽Wmi′,i=x,y,z。本发明对磁力矩器输出进行补偿,能够提高磁力矩器实际输出效率,从而提高系统控制精度。
-
公开(公告)号:CN110440984B
公开(公告)日:2021-06-11
申请号:CN201910754711.0
申请日:2019-08-15
Applicant: 北京控制工程研究所
IPC: G01M1/12
Abstract: 一种航天器质心偏差检测精度估算方法:(1)航天器相对于轨道坐标系x、y、z各轴做短时正负交替力偶方波序列激励机动进行质心检测时,给出了考虑轨道角速度贡献的机动轴垂直平面内质心检测总误差与随机误差的估计式;(2)综合(1)的误差估计式,给出了考虑轨道角速度贡献的三轴先后机动情形下质心检测的总误差统一估计式与随机误差统一估计式;(3)综合(1)的误差估计式,给出了考虑轨道角速度贡献的任意两轴先后机动情形的质心检测总误差统一估计式与随机误差统一估计式。这些估计式揭示出质心偏差检测精度指标的主要影响因素,并为设置合适的质心检测指标及细化质心检测方案提供指导。
-
公开(公告)号:CN110440984A
公开(公告)日:2019-11-12
申请号:CN201910754711.0
申请日:2019-08-15
Applicant: 北京控制工程研究所
IPC: G01M1/12
Abstract: 一种航天器质心偏差检测精度估算方法:(1)航天器相对于轨道坐标系x、y、z各轴做短时正负交替力偶方波序列激励机动进行质心检测时,给出了考虑轨道角速度贡献的机动轴垂直平面内质心检测总误差与随机误差的估计式;(2)综合(1)的误差估计式,给出了考虑轨道角速度贡献的三轴先后机动情形下质心检测的总误差统一估计式与随机误差统一估计式;(3)综合(1)的误差估计式,给出了考虑轨道角速度贡献的任意两轴先后机动情形的质心检测总误差统一估计式与随机误差统一估计式。这些估计式揭示出质心偏差检测精度指标的主要影响因素,并为设置合适的质心检测指标及细化质心检测方案提供指导。
-
公开(公告)号:CN103616884B
公开(公告)日:2015-12-30
申请号:CN201310547891.8
申请日:2013-11-06
Applicant: 北京控制工程研究所
IPC: G05B23/02
Abstract: 本发明一种毫秒级卫星姿态轨道控制实时测试方法,首先创建Windows+RTX的系统框架,建立Windows与RTX信息交互的共享内存;其次,采用PCI设备板卡的实时性驱动程序,实现执行机构控制量信息的毫秒级采集;然后,实时迭代获得姿轨控动力学运动学;最后,在RTX环境下,通过PCI设备板卡的实时性驱动,将敏感器信号实时发送到星上的相应敏感器设备上,并利用同步事件机制,使Windows进行界面更新。本方法提升了地面测试设备信号流的实时性操作问题,解决了高性能姿轨控制系统卫星对地面测试设备的实时性需求问题。
-
公开(公告)号:CN103616884A
公开(公告)日:2014-03-05
申请号:CN201310547891.8
申请日:2013-11-06
Applicant: 北京控制工程研究所
IPC: G05B23/02
Abstract: 本发明一种毫秒级卫星姿态轨道控制实时测试方法,首先创建Windows+RTX的系统框架,建立Windows与RTX信息交互的共享内存;其次,采用PCI设备板卡的实时性驱动程序,实现执行机构控制量信息的毫秒级采集;然后,实时迭代获得姿轨控动力学运动学;最后,在RTX环境下,通过PCI设备板卡的实时性驱动,将敏感器信号实时发送到星上的相应敏感器设备上,并利用同步事件机制,使Windows进行界面更新。本方法提升了地面测试设备信号流的实时性操作问题,解决了高性能姿轨控制系统卫星对地面测试设备的实时性需求问题。
-
公开(公告)号:CN102114917B
公开(公告)日:2012-11-21
申请号:CN200910216909.X
申请日:2009-12-31
Applicant: 北京控制工程研究所
IPC: B64G1/24
Abstract: 本发明提供一种提高磁力矩器控制精度的处理方法,其卫星在轨正常运行时采用脉宽调制的方式进行磁控;具体步骤为:(a)计算得出磁力矩器输出磁矩Mi(i=x,y,z);(b)然后计算得出磁力矩器工作脉宽Wmi(i=x,y,z);(c)计算获得补偿后的分别安装于卫星三个轴上的磁力矩器工作脉宽Wmi′,i=x,y,z。本发明对磁力矩器输出进行补偿,能够提高磁力矩器实际输出效率,从而提高系统控制精度。
-
-
-
-
-