-
公开(公告)号:CN106353032B
公开(公告)日:2019-03-29
申请号:CN201510652186.3
申请日:2015-10-10
Applicant: 北京控制与电子技术研究所
IPC: G01M1/12
Abstract: 本发明提供了一种欠光照条件下天体形心快速检测方法,重点解决深空光学自主导航系统中导航观测量的精确提取问题。该方法首先利用光学成像的梯度大小、太阳光线方向等信息进行目标天体“边缘临近区域”像素快速检测,以此作为待拟合数据集进行天体形心的确定,有效解决了欠光照环境下传统精确导航系统中低对比度图像的边缘的精确提取问题。进而利用光学敏感器成像的梯度方向、目标天体形状以及光照方向等信息建立目标天体的形心检测模型,实现深空环境中欠光照条件下的目标天体形心的快速检测。
-
公开(公告)号:CN106353032A
公开(公告)日:2017-01-25
申请号:CN201510652186.3
申请日:2015-10-10
Applicant: 北京控制与电子技术研究所
IPC: G01M1/12
CPC classification number: G01M1/122
Abstract: 本发明提供了一种欠光照条件下天体形心快速检测方法,重点解决深空光学自主导航系统中导航观测量的精确提取问题。该方法首先利用光学成像的梯度大小、太阳光线方向等信息进行目标天体“边缘临近区域”像素快速检测,以此作为待拟合数据集进行天体形心的确定,有效解决了欠光照环境下传统精确导航系统中低对比度图像的边缘的精确提取问题。进而利用光学敏感器成像的梯度方向、目标天体形状以及光照方向等信息建立目标天体的形心检测模型,实现深空环境中欠光照条件下的目标天体形心的快速检测。
-
公开(公告)号:CN111680462B
公开(公告)日:2020-11-10
申请号:CN202010803677.4
申请日:2020-08-11
Applicant: 北京控制与电子技术研究所
IPC: G06F30/28 , G06F111/10 , G06F113/08 , G06F119/14
Abstract: 本发明属于航天器制导领域,具体涉及一种基于空间目标在光学相平面位置变化的制导方法和系统,旨在为了解决降低运算量的前提下保持制导精准度的问题。本发明方法包括:基于目标小行星动力学模型,获取当前时刻目标小行星的位置矢量;基于撞击器姿轨一体化控制动力学模型,获取当前时刻撞击器的位置矢量和日心J2000惯性系到撞击器本体系的转换矩阵;基于、和计算所述目标小行星中心在所述撞击器中相机相平面横和纵方向上相对撞击器的位置和;基于、以及当前时刻距离预定撞击时刻的剩余的时间,获得所述撞击器的速度增量矢量。本发明运算量小,并可保证较好的计算精度。
-
公开(公告)号:CN111680455A
公开(公告)日:2020-09-18
申请号:CN202010802739.X
申请日:2020-08-11
Applicant: 北京控制与电子技术研究所
IPC: G06F30/27 , G06F111/04 , G06F111/10 , G06F119/14
Abstract: 本发明属于空间探测领域,具体涉及了一种基于搭载形式的撞击探测轨道设计方法和系统,旨在解决现有技术中无法满足由观测器搭载撞击器形式的探测器的撞击探测任务要求对观测器轨道和撞击器轨道做协同设计的问题。本发明包括:确立参考系,基于参考系构建二体模型、精确动力学模型和工程约束模型,通过构建的模型计算撞击器的初始轨道集误差约束条件筛选出撞击器的标称轨道,基于标称轨道计算出观测器的变轨时刻和变轨速度并通过打靶法基于精确动力模型计算出观测器的精确标称轨道。本发明实现了观测器和撞击器轨道的协同设计,为小天体撞击探测任务提供了参考。
-
公开(公告)号:CN106326826A
公开(公告)日:2017-01-11
申请号:CN201510652643.9
申请日:2015-10-10
Applicant: 北京控制与电子技术研究所
Abstract: 本发明公开一种基于可见光图像的深空探测器自主着陆区选取方法。重点解决在深空探测器着陆过程中利用可见光敏感器成像获得着陆区域地形数据,并判断着陆区域是否适合着陆的问题。首先根据成像分辨率、着陆器底座尺寸、相机FOV信息,通过优化自定义的全局可分和局部均匀度量,自适应地确定特征检测窗口尺寸;进而在自适应特征检测窗口尺寸下提取图像的统计、纹理和梯度特征,最后对图像纹理特性进行特征级融合,对图像统计特征、梯度特性及纹理特征信息进行决策级融合,实现对目标天体地形起伏的自适应判别,确定深空探测器自主着陆过程中的最佳自主着陆区。
-
公开(公告)号:CN111678525B
公开(公告)日:2021-01-12
申请号:CN202010803676.X
申请日:2020-08-11
Applicant: 北京控制与电子技术研究所
IPC: G01C21/24
Abstract: 本发明属于自主导航领域,具体涉及了一种基于互测信息的多航天器自主导航方法、系统及装置,旨在解决现有技术的自主导航方法中无法完全不依赖地面探测信息进行自主导航的问题。本发明包括:先选取具备唯一性的航天器组,然后通过无量纲的形式构建航天器动力学模型,再基于此航天动力学模型计算航天器各时刻参考的状态量,通过计算表示观测量和状态量偏差的测量‑状态关系模型对航天器的实际状态量进行修正得到航天器的精确状态量。本发明通过选取具备唯一性的航天器组对航天器航行过程构建航天器动力学模型,解决了现有技术中航天器导航技术中求解矩阵容易出现的秩亏的问题,实现了完全不依赖地面探测信息的航天器自主导航。
-
公开(公告)号:CN111735460B
公开(公告)日:2020-11-27
申请号:CN202010780132.6
申请日:2020-08-05
Applicant: 北京控制与电子技术研究所
Abstract: 本发明属于自主导航与制导控制领域,具体涉及了一种基于小天体中心提取的航天器导航方法、系统及装置,旨在解决现有技术中小天体中心提取精度低造成航天器导航精度低的问题。本发明包括:通过设定阈值进行小天体光学影像的边缘提取;对提取后的图像去噪滤波;通过多向扫描提取轮廓信息;进行轮廓拟合,得到小天体的中心点位置,进行航天器导航。本发明通过剔除背景恒星干扰、多向扫描和优化与迭代相结合等技术手段解决了小天体光学背景恒星干扰等问题,可获得较好的轮廓边缘,提高了轮廓拟合和中心点位置获取的精度,实现了航天器的高精度导航。
-
公开(公告)号:CN111735460A
公开(公告)日:2020-10-02
申请号:CN202010780132.6
申请日:2020-08-05
Applicant: 北京控制与电子技术研究所
Abstract: 本发明属于自主导航与制导控制领域,具体涉及了一种基于小天体中心提取的航天器导航方法、系统及装置,旨在解决现有技术中小天体中心提取精度低造成航天器导航精度低的问题。本发明包括:通过设定阈值进行小天体光学影像的边缘提取;对提取后的图像去噪滤波;通过多向扫描提取轮廓信息;进行轮廓拟合,得到小天体的中心点位置,进行航天器导航。本发明通过剔除背景恒星干扰、多向扫描和优化与迭代相结合等技术手段解决了小天体光学背景恒星干扰等问题,可获得较好的轮廓边缘,提高了轮廓拟合和中心点位置获取的精度,实现了航天器的高精度导航。
-
公开(公告)号:CN111739049B
公开(公告)日:2020-12-01
申请号:CN202010780130.7
申请日:2020-08-05
Applicant: 北京控制与电子技术研究所
Abstract: 本发明属于深空导航领域,具体涉及了一种基于图像的航天器导航方法、系统和图像边缘点提取方法,旨在解决现有技术中基于地外天体光学图像获取的导航信息精度不足的问题。本发明包括:获取灰度图像作为当前帧,根据空间信息划定图像处理区域,获取初始边缘点集,通过建立特征扫描框的方法对图像进行横向和纵向扫描,设置第一判定条件判定提取出的边缘点是真边缘点还是伪边缘点,舍弃伪边缘点将真边缘点集取并集得到目标天体的边缘点集,基于所述边缘点计算形心坐标,再基于所述形心坐标获取导航信息。本发明提高了深空导航中导航信息的获取精度。
-
公开(公告)号:CN111680455B
公开(公告)日:2020-11-10
申请号:CN202010802739.X
申请日:2020-08-11
Applicant: 北京控制与电子技术研究所
IPC: G06F30/27 , G06F111/04 , G06F111/10 , G06F119/14
Abstract: 本发明属于空间探测领域,具体涉及了一种基于搭载形式的撞击探测轨道设计方法和系统,旨在解决现有技术中无法满足由观测器搭载撞击器形式的探测器的撞击探测任务要求对观测器轨道和撞击器轨道做协同设计的问题。本发明包括:确立参考系,基于参考系构建二体模型、精确动力学模型和工程约束模型,通过构建的模型计算撞击器的初始轨道集误差约束条件筛选出撞击器的标称轨道,基于标称轨道计算出观测器的变轨时刻和变轨速度并通过打靶法基于精确动力模型计算出观测器的精确标称轨道。本发明实现了观测器和撞击器轨道的协同设计,为小天体撞击探测任务提供了参考。
-
-
-
-
-
-
-
-
-