一种共享可更新的Deepfake视频内容监管方法

    公开(公告)号:CN113537042B

    公开(公告)日:2024-05-28

    申请号:CN202110792697.0

    申请日:2021-07-14

    Abstract: 本发明涉及一种共享可更新的Deepfake视频内容监管方法及系统,其方法包括:步骤S1:将Deepfake视频输入预处理模块,提取视频关键帧并截取人脸图像作为训练样本;步骤S2:提取训练样本的空域与频域特征,将特征信息输入SVM分类模型进行训练,得到初始的内容监管模型;步骤S3:基于区块链技术建立共享可更新策略,并设计激励机制收集新的有效的Deepfake视频数据;步骤S4:收集样本数量达到阈值后,对初始模型进行更新训练,更新后对样本贡献者共享Deepfake视频内容检测方法并等待下一次更新。本发明可以实现Deepfake视频内容检测方法的共享,并对其进行持续性更新,有效消除了Deepfake视频数据集样本不平衡问题,解决了过拟合问题,从而提高了内容监管模型的泛化能力。

    一种共享可更新的Deepfake视频内容监管方法及系统

    公开(公告)号:CN113537042A

    公开(公告)日:2021-10-22

    申请号:CN202110792697.0

    申请日:2021-07-14

    Abstract: 本发明涉及一种共享可更新的Deepfake视频内容监管方法及系统,其方法包括:步骤S1:将Deepfake视频输入预处理模块,提取视频关键帧并截取人脸图像作为训练样本;步骤S2:提取训练样本的空域与频域特征,将特征信息输入SVM分类模型进行训练,得到初始的内容监管模型;步骤S3:基于区块链技术建立共享可更新策略,并设计激励机制收集新的有效的Deepfake视频数据;步骤S4:收集样本数量达到阈值后,对初始模型进行更新训练,更新后对样本贡献者共享Deepfake视频内容检测方法并等待下一次更新。本发明可以实现Deepfake视频内容检测方法的共享,并对其进行持续性更新,有效消除了Deepfake视频数据集样本不平衡问题,解决了过拟合问题,从而提高了内容监管模型的泛化能力。

Patent Agency Ranking