一种基于高阶抑制排序算法的滚动轴承复合故障预测特征选择方法

    公开(公告)号:CN119555382A

    公开(公告)日:2025-03-04

    申请号:CN202411585216.9

    申请日:2024-11-07

    Abstract: 本发明提出一种基于高阶抑制排序算法的全生命周期复合故障预测特征选择方法,包括:1)构建滚动轴承全生命周期复合故障特征数据集FD;2)利用特征数据集FD,将滚动轴承的全生命周期划分为健康、退化、失效三个阶段;3)根据特征数据集FD构建因果特征加权高阶网络;4)构建三个网络Gα,Gβ,Gγ的高阶PageRank值集HPRα、HPRβ和HPRγ;5)将滚动轴承三种状态数据集FDα、FDβ、FDγ里的特征,根据高阶PageRank值构建特征子集Fri;6)进行故障预测与特征选择;本发明针对轴承故障的物理特性,提取信号数据的多种指标特征构建因果特征加权高阶网络,用改进的中心性指标PageRank选择故障预测关键特征。本发明能够用更少的特征实现更精准的故障预测,具有较高的应用价值和推广价值。

Patent Agency Ranking