基于视觉筛选的无人驾驶汽车组合导航方法

    公开(公告)号:CN104848867B

    公开(公告)日:2017-12-08

    申请号:CN201510243231.X

    申请日:2015-05-13

    Abstract: 基于视觉筛选的无人驾驶汽车组合导航方法,该方法包括以下步骤:坐标系换算;建筑物遮挡角度识别;非视距环境下卫星信号可用性判断;改进的自适应平方根容积卡尔曼滤波算法;提出了以视觉信息为筛选条件的组合导航算法,引入了“剔除非视距传播卫星数据”的概念并给出判断方法,用来剔除由于建筑物遮挡而造成精度下降的GPS卫星数据信息;本发明区别于传统组合方法采用视觉导航用以实时并行处理数据,而是采用视觉信息对GPS数据有针对性的筛选,避免了传统采用视觉导航而造成的维数灾难;提出了改进的自适应平方根容积卡尔曼滤波算法,并考虑到无人驾驶智能车行驶在城市路况中导航数据强非线性的问题。

    基于视觉筛选的无人驾驶汽车组合导航方法

    公开(公告)号:CN104848867A

    公开(公告)日:2015-08-19

    申请号:CN201510243231.X

    申请日:2015-05-13

    CPC classification number: G01C21/3415 G01S19/49

    Abstract: 基于视觉筛选的无人驾驶汽车组合导航方法,该方法包括以下步骤:坐标系换算;建筑物遮挡角度识别;非视距环境下卫星信号可用性判断;改进的自适应平方根容积卡尔曼滤波算法;提出了以视觉信息为筛选条件的组合导航算法,引入了“剔除非视距传播卫星数据”的概念并给出判断方法,用来剔除由于建筑物遮挡而造成精度下降的GPS卫星数据信息;本发明区别于传统组合方法采用视觉导航用以实时并行处理数据,而是采用视觉信息对GPS数据有针对性的筛选,避免了传统采用视觉导航而造成的维数灾难;提出了改进的自适应平方根容积卡尔曼滤波算法,并考虑到无人驾驶智能车行驶在城市路况中导航数据强非线性的问题。

Patent Agency Ranking