-
公开(公告)号:CN116680763B
公开(公告)日:2024-05-17
申请号:CN202310700966.5
申请日:2023-06-13
Applicant: 北京大学长沙计算与数字经济研究院 , 北京大学
IPC: G06F30/10 , G06N3/04 , G06F17/13 , G06F111/06
Abstract: 本发明涉及形状优化方法及计算机存储介质和终端设备,包括:根据偏微分方程约束的形状待优化问题,确定状态、伴随、正则方程;构建状态、伴随、正则方程神经网络代理模型;设定优化目标初始形状,将初始形状边界离散为若干形状表征点;在当前形状内部与边界分别采样若干配置点;优化状态损失函数,更新状态方程代理模型;优化伴随损失函数,更新伴随方程代理模型;优化正则损失函数,更新正则方程代理模型;计算形状表征点对应的形状优化方向,更新当前形状;判断是否结束形状更新。本发明利用神经网络求解方程的无网格特性,突破了传统网格依赖形状优化方法的瓶颈,可用于求解不同领域的形状待优化问题。
-
公开(公告)号:CN116680763A
公开(公告)日:2023-09-01
申请号:CN202310700966.5
申请日:2023-06-13
Applicant: 北京大学长沙计算与数字经济研究院 , 北京大学
IPC: G06F30/10 , G06N3/04 , G06F17/13 , G06F111/06
Abstract: 本发明涉及形状优化方法及计算机存储介质和终端设备,包括:根据偏微分方程约束的形状待优化问题,确定状态、伴随、正则方程;构建状态、伴随、正则方程神经网络代理模型;设定优化目标初始形状,将初始形状边界离散为若干形状表征点;在当前形状内部与边界分别采样若干配置点;优化状态损失函数,更新状态方程代理模型;优化伴随损失函数,更新伴随方程代理模型;优化正则损失函数,更新正则方程代理模型;计算形状表征点对应的形状优化方向,更新当前形状;判断是否结束形状更新。本发明利用神经网络求解方程的无网格特性,突破了传统网格依赖形状优化方法的瓶颈,可用于求解不同领域的形状待优化问题。
-