-
公开(公告)号:CN104089572B
公开(公告)日:2016-12-07
申请号:CN201410364545.0
申请日:2014-07-28
Applicant: 北京大学 , 北京大学软件与微电子学院无锡产学研合作教育基地
IPC: G01B7/34
Abstract: 本发明公开了一种利用电容变化检测刻蚀侧壁粗糙的方法,仅在功能区域进行刻蚀工艺前添加上述工艺流程,避免增加功能器件设计的复杂;利用检测区域电容变化反应功能区域侧壁粗糙,减小了小尺寸带来的误差,同时避免裂断面等对器件结构有损害的操作,实现对刻蚀结构的无损检测;检测区域数目由功能区域刻蚀窗口大小种类决定,实现了更加精准地检测不同条件下的刻蚀侧壁粗糙目的,同时实现对不同刻蚀条件下侧壁粗糙的一步检测。本发明设计的工艺流程简单,各工序均为成熟技术,工艺难度较低,实现简便,易于操作。
-
公开(公告)号:CN103337380A
公开(公告)日:2013-10-02
申请号:CN201310125279.1
申请日:2013-04-11
Applicant: 北京大学 , 北京大学软件与微电子学院无锡产学研合作教育基地
IPC: H01G11/84
CPC classification number: Y02E60/13
Abstract: 本发明涉及一种新型硅基超级电容及其制备方法,该方法包括:选择单晶硅片作为芯片基片;在基片上采用MEMS工艺光刻并定义电容制作区域;在电容制作区域刻蚀出黑硅;利用ALD单原子层淀积技术在黑硅上生长电容介质层以及电极层;淀积并图形化金属引出电极。本发明利用ALD单原子淀积技术在黑硅表面生长介质层和电极层,在实现大容量电荷储存的同时克服了传统超级电容难于微小和集成的缺点,同时将充放电速度提升至平板电容量级。
-
公开(公告)号:CN104267426B
公开(公告)日:2017-04-19
申请号:CN201410449770.4
申请日:2014-09-04
Applicant: 北京大学软件与微电子学院无锡产学研合作教育基地 , 北京大学
CPC classification number: H01J37/28 , H01J37/263 , H01J2237/24521
Abstract: 本发明提出了一种电子束斑的测量方法和设备。所述测量方法包括:准备第一基片,在所述第一基片上形成悬置的光刻胶层,并且在第一基片与光刻胶层相对的另一侧上形成检测窗口;准备第二基片,在所述第二基片上形成背腔结构;将第二基片的背腔结构入口一侧与第一基片的光刻胶一侧固定,并且将检测窗口与背腔结构入口对准;将待测电子束以一定的路径角θ单次扫过检测窗口,对光刻胶层进行背向曝光,其中所述路径角是电子束扫描方向与检测窗口长度方向的夹角;以及对光刻胶进行显影,并且测量光刻胶沿扫描方向的图形长度L,利用下式计算电子束束斑直径d:d=L·tanθ‑W/cosθ。
-
公开(公告)号:CN104048592B
公开(公告)日:2017-01-11
申请号:CN201410174912.0
申请日:2014-04-28
Applicant: 北京大学 , 北京大学软件与微电子学院无锡产学研合作教育基地
Abstract: 本发明公开了一种利用电流变化检测刻蚀槽深的方法,通过设计特殊检测区域来实现即时反映刻蚀槽深的目的,采用MEMS加工工艺制备检测区域,利用电流计实现信号读取。该方法中通过采用SOI硅片以及MEMS加工工艺实现了功能区域和检测区域良好的电学隔离,避免检测电流对功能器件区造成损害。同时,通过图形转移在检测区域实现功能区域刻蚀窗口的复制,保证检测区域的刻蚀条件和功能区域趋于一致。最后对检测区域深槽结构进行严格地电学建模计算,获得刻蚀深度和电流信号之间的关系,并以此通过电流计的检测实现对刻蚀槽深的即时监控。
-
公开(公告)号:CN104048592A
公开(公告)日:2014-09-17
申请号:CN201410174912.0
申请日:2014-04-28
Applicant: 北京大学 , 北京大学软件与微电子学院无锡产学研合作教育基地
Abstract: 本发明公开了一种利用电流变化检测刻蚀槽深的方法,通过设计特殊检测区域来实现即时反映刻蚀槽深的目的,采用MEMS加工工艺制备检测区域,利用电流计实现信号读取。该方法中通过采用SOI硅片以及MEMS加工工艺实现了功能区域和检测区域良好的电学隔离,避免检测电流对功能器件区造成损害。同时,通过图形转移在检测区域实现功能区域刻蚀窗口的复制,保证检测区域的刻蚀条件和功能区域趋于一致。最后对检测区域深槽结构进行严格地电学建模计算,获得刻蚀深度和电流信号之间的关系,并以此通过电流计的检测实现对刻蚀槽深的即时监控。
-
公开(公告)号:CN103337380B
公开(公告)日:2016-06-01
申请号:CN201310125279.1
申请日:2013-04-11
Applicant: 北京大学 , 北京大学软件与微电子学院无锡产学研合作教育基地
IPC: H01G11/84
CPC classification number: Y02E60/13
Abstract: 本发明涉及一种新型硅基超级电容及其制备方法,该方法包括:选择单晶硅片作为芯片基片;在基片上采用MEMS工艺光刻并定义电容制作区域;在电容制作区域刻蚀出黑硅;利用ALD单原子层淀积技术在黑硅上生长电容介质层以及电极层;淀积并图形化金属引出电极。本发明利用ALD单原子淀积技术在黑硅表面生长介质层和电极层,在实现大容量电荷储存的同时克服了传统超级电容难于微小和集成的缺点,同时将充放电速度提升至平板电容量级。
-
公开(公告)号:CN104267426A
公开(公告)日:2015-01-07
申请号:CN201410449770.4
申请日:2014-09-04
Applicant: 北京大学 , 北京大学软件与微电子学院无锡产学研合作教育基地
CPC classification number: H01J37/28 , H01J37/263 , H01J2237/24521
Abstract: 本发明提出了一种电子束斑的测量方法和设备。所述测量方法包括:准备第一基片,在所述第一基片上形成悬置的光刻胶层,并且在第一基片与光刻胶层相对的另一侧上形成检测窗口;准备第二基片,在所述第二基片上形成背腔结构;将第二基片的背腔结构入口一侧与第一基片的光刻胶一侧固定,并且将检测窗口与背腔结构入口对准;将待测电子束以一定的路径角θ单次扫过检测窗口,对光刻胶层进行背向曝光,其中所述路径角是电子束扫描方向与检测窗口长度方向的夹角;以及对光刻胶进行显影,并且测量光刻胶沿扫描方向的图形长度L,利用下式计算电子束束斑直径d:d=L·tanθ-W/cosθ。
-
公开(公告)号:CN104089572A
公开(公告)日:2014-10-08
申请号:CN201410364545.0
申请日:2014-07-28
Applicant: 北京大学 , 北京大学软件与微电子学院无锡产学研合作教育基地
IPC: G01B7/34
Abstract: 本发明公开了一种利用电容变化检测刻蚀侧壁粗糙的方法,仅在功能区域进行刻蚀工艺前添加上述工艺流程,避免增加功能器件设计的复杂;利用检测区域电容变化反应功能区域侧壁粗糙,减小了小尺寸带来的误差,同时避免裂断面等对器件结构有损害的操作,实现对刻蚀结构的无损检测;检测区域数目由功能区域刻蚀窗口大小种类决定,实现了更加精准地检测不同条件下的刻蚀侧壁粗糙目的,同时实现对不同刻蚀条件下侧壁粗糙的一步检测。本发明设计的工艺流程简单,各工序均为成熟技术,工艺难度较低,实现简便,易于操作。
-
公开(公告)号:CN120010195A
公开(公告)日:2025-05-16
申请号:CN202510263143.X
申请日:2025-03-06
Applicant: 北京大学
IPC: G03F7/20
Abstract: 本发明公开了一种基于悬空纳米胶片的电子束斑强度分布表征方法,属于微纳加工技术领域。本发明为解决现有技术在电子束光刻机应用中辐射损伤、可重复性差及引入额外散射干扰等问题,主要采用基于硅晶圆的标准微电子工艺制造悬空纳米胶片结构,通过曝光显影表征电子束斑的强度分布。本方法能够在兼容原有电子束光刻机工艺环境的基础上,实现电子束斑的精准表征,无需背面曝光,简化了工艺步骤,有效避免了电子散射和边缘溅射的干扰。
-
公开(公告)号:CN113534106A
公开(公告)日:2021-10-22
申请号:CN202110621289.9
申请日:2021-06-03
Applicant: 北京大学
IPC: G01S7/484 , G01S7/4861 , G01S17/08
Abstract: 本发明提供一种微腔光梳激光器、测距装置及测距方法,涉及激光测距技术领域,包括片上半导体激光器与高品质因子微腔,微腔包括耦合波导与环形光学微腔;片上半导体激光器与耦合波导连接,耦合波导与环形光学微腔相切;片上半导体激光器用于发出单频泵浦激光,单频泵浦激光经由耦合波导进入环形光学微腔,环形光学微腔用于将单频泵浦激光转变为多频光梳激光,环形光学微腔内部分泵浦激光散射回片上半导体激光器,形成孤子锁模光脉冲。本发明通过耦合波导与环形光学微腔将单频泵浦激光进行波导耦合,产生孤子锁模光脉冲,结合电光采样时域探测方法与孤子微梳时序调控技术,实现一种便携型、高速且高精度的激光测距装置。
-
-
-
-
-
-
-
-
-