-
公开(公告)号:CN104089572B
公开(公告)日:2016-12-07
申请号:CN201410364545.0
申请日:2014-07-28
Applicant: 北京大学 , 北京大学软件与微电子学院无锡产学研合作教育基地
IPC: G01B7/34
Abstract: 本发明公开了一种利用电容变化检测刻蚀侧壁粗糙的方法,仅在功能区域进行刻蚀工艺前添加上述工艺流程,避免增加功能器件设计的复杂;利用检测区域电容变化反应功能区域侧壁粗糙,减小了小尺寸带来的误差,同时避免裂断面等对器件结构有损害的操作,实现对刻蚀结构的无损检测;检测区域数目由功能区域刻蚀窗口大小种类决定,实现了更加精准地检测不同条件下的刻蚀侧壁粗糙目的,同时实现对不同刻蚀条件下侧壁粗糙的一步检测。本发明设计的工艺流程简单,各工序均为成熟技术,工艺难度较低,实现简便,易于操作。
-
公开(公告)号:CN103337380A
公开(公告)日:2013-10-02
申请号:CN201310125279.1
申请日:2013-04-11
Applicant: 北京大学 , 北京大学软件与微电子学院无锡产学研合作教育基地
IPC: H01G11/84
CPC classification number: Y02E60/13
Abstract: 本发明涉及一种新型硅基超级电容及其制备方法,该方法包括:选择单晶硅片作为芯片基片;在基片上采用MEMS工艺光刻并定义电容制作区域;在电容制作区域刻蚀出黑硅;利用ALD单原子层淀积技术在黑硅上生长电容介质层以及电极层;淀积并图形化金属引出电极。本发明利用ALD单原子淀积技术在黑硅表面生长介质层和电极层,在实现大容量电荷储存的同时克服了传统超级电容难于微小和集成的缺点,同时将充放电速度提升至平板电容量级。
-
公开(公告)号:CN104048592B
公开(公告)日:2017-01-11
申请号:CN201410174912.0
申请日:2014-04-28
Applicant: 北京大学 , 北京大学软件与微电子学院无锡产学研合作教育基地
Abstract: 本发明公开了一种利用电流变化检测刻蚀槽深的方法,通过设计特殊检测区域来实现即时反映刻蚀槽深的目的,采用MEMS加工工艺制备检测区域,利用电流计实现信号读取。该方法中通过采用SOI硅片以及MEMS加工工艺实现了功能区域和检测区域良好的电学隔离,避免检测电流对功能器件区造成损害。同时,通过图形转移在检测区域实现功能区域刻蚀窗口的复制,保证检测区域的刻蚀条件和功能区域趋于一致。最后对检测区域深槽结构进行严格地电学建模计算,获得刻蚀深度和电流信号之间的关系,并以此通过电流计的检测实现对刻蚀槽深的即时监控。
-
公开(公告)号:CN104048592A
公开(公告)日:2014-09-17
申请号:CN201410174912.0
申请日:2014-04-28
Applicant: 北京大学 , 北京大学软件与微电子学院无锡产学研合作教育基地
Abstract: 本发明公开了一种利用电流变化检测刻蚀槽深的方法,通过设计特殊检测区域来实现即时反映刻蚀槽深的目的,采用MEMS加工工艺制备检测区域,利用电流计实现信号读取。该方法中通过采用SOI硅片以及MEMS加工工艺实现了功能区域和检测区域良好的电学隔离,避免检测电流对功能器件区造成损害。同时,通过图形转移在检测区域实现功能区域刻蚀窗口的复制,保证检测区域的刻蚀条件和功能区域趋于一致。最后对检测区域深槽结构进行严格地电学建模计算,获得刻蚀深度和电流信号之间的关系,并以此通过电流计的检测实现对刻蚀槽深的即时监控。
-
公开(公告)号:CN104089572A
公开(公告)日:2014-10-08
申请号:CN201410364545.0
申请日:2014-07-28
Applicant: 北京大学 , 北京大学软件与微电子学院无锡产学研合作教育基地
IPC: G01B7/34
Abstract: 本发明公开了一种利用电容变化检测刻蚀侧壁粗糙的方法,仅在功能区域进行刻蚀工艺前添加上述工艺流程,避免增加功能器件设计的复杂;利用检测区域电容变化反应功能区域侧壁粗糙,减小了小尺寸带来的误差,同时避免裂断面等对器件结构有损害的操作,实现对刻蚀结构的无损检测;检测区域数目由功能区域刻蚀窗口大小种类决定,实现了更加精准地检测不同条件下的刻蚀侧壁粗糙目的,同时实现对不同刻蚀条件下侧壁粗糙的一步检测。本发明设计的工艺流程简单,各工序均为成熟技术,工艺难度较低,实现简便,易于操作。
-
公开(公告)号:CN103337380B
公开(公告)日:2016-06-01
申请号:CN201310125279.1
申请日:2013-04-11
Applicant: 北京大学 , 北京大学软件与微电子学院无锡产学研合作教育基地
IPC: H01G11/84
CPC classification number: Y02E60/13
Abstract: 本发明涉及一种新型硅基超级电容及其制备方法,该方法包括:选择单晶硅片作为芯片基片;在基片上采用MEMS工艺光刻并定义电容制作区域;在电容制作区域刻蚀出黑硅;利用ALD单原子层淀积技术在黑硅上生长电容介质层以及电极层;淀积并图形化金属引出电极。本发明利用ALD单原子淀积技术在黑硅表面生长介质层和电极层,在实现大容量电荷储存的同时克服了传统超级电容难于微小和集成的缺点,同时将充放电速度提升至平板电容量级。
-
公开(公告)号:CN103884605B
公开(公告)日:2016-03-02
申请号:CN201410119092.5
申请日:2014-03-27
Applicant: 北京大学
IPC: G01N3/20
Abstract: 本发明涉及一种利用表面断裂强度检测刻蚀表面质量的方法及装置。该方法采用包含刻蚀表面的等强度梁,利用探针台探针对所述等强度梁的刻蚀表面施加位移负载,直至所述等强度梁断裂;然后测量所述等强度梁断裂时刻蚀表面受到的应力,得到表面断裂强度,利用该断裂强度判定刻蚀表面的质量。该装置包括等强度梁和片上多功能针头;所述片上多功能针头包括针尖,支撑针尖的弹性结构,以及测量所述针尖的位移的测力标尺。本发明从断裂强度角度去检测和评价表面质量,能够反映刻蚀表面的粗糙、微裂纹水平,对器件性能、可靠性具有更高的参考价值,操作简单,通用性强。
-
公开(公告)号:CN103058123B
公开(公告)日:2015-11-18
申请号:CN201310012806.8
申请日:2013-01-14
Applicant: 北京大学
Abstract: 本发明公开一种基于表面牺牲层工艺制作的自封装的MEMS器件以及采用该器件结构的红外传感器。该MEMS器件包括基片、衬底保护层、下电极、下电极保护层、结构层、金属层以及封装层,所述结构层和所述金属层位于由所述封装层形成的封装腔室内,所述封装腔室通过在释放MEMS器件结构时利用粘附效应将封装层粘附在下电极保护层上而形成。本发明适用于红外传感器等具有可动结构的MEMS器件,MEMS器件本身和封装一起完成,封装周期短,工艺质量和成品率高,适于批量大规模生产。
-
公开(公告)号:CN104003350A
公开(公告)日:2014-08-27
申请号:CN201410205595.4
申请日:2014-05-15
Applicant: 北京大学
Abstract: 本发明涉及一种应用于体硅谐振式压力传感器的圆片级封装方法,其步骤包括:1)根据谐振式压力传感器的结构选取合适的SOI硅片和进行阳极键合的玻璃片;2)对SOI硅片的器件层进行台阶刻蚀,形成器件结构;3)去除部分埋氧层,释放器件结构;4)将SOI片和玻璃片进行真空阳极键合;5)对硅片进行减薄;6)通过光刻定义引线窗口,然后刻蚀硅,露出埋氧层;7)去除引线窗口内的埋氧层;8)在硅片表面淀积二氧化硅,形成电学隔离;9)对淀积的二氧化硅进行刻蚀,形成pad孔;10)淀积金属pad。本发明采用圆片级封装,工艺流程简单,能够大大降低体硅谐振式压力传感器的真空封装成本。
-
公开(公告)号:CN103058123A
公开(公告)日:2013-04-24
申请号:CN201310012806.8
申请日:2013-01-14
Applicant: 北京大学
Abstract: 本发明公开一种基于表面牺牲层工艺制作的自封装的MEMS器件以及及采用该器件结构的红外传感器。该MEMS器件包括基片、衬底保护层、下电极、下电极保护层、结构层、金属层以及封装层,所述结构层和所述金属层位于由所述封装层形成的封装腔室内,所述封装腔室通过在释放MEMS器件结构时利用粘附效应将封装层粘附在下电极保护层上而形成。本发明适用于红外传感器等具有可动结构的MEMS器件,MEMS器件本身和封装一起完成,封装周期短,工艺质量和成品率高,适于批量大规模生产。
-
-
-
-
-
-
-
-
-