SVM模型的训练方法、装置、设备和计算机可读存储介质

    公开(公告)号:CN112686342A

    公开(公告)日:2021-04-20

    申请号:CN202110270550.5

    申请日:2021-03-12

    Applicant: 北京大学

    Abstract: 本公开的实施例提供了SVM模型的训练方法、装置、设备和计算机可读存储介质。所述方法包括获取数据集;加载所述数据集;通过自动调优框架在线预测所述数据集的最优存储格式并进行格式转换;执行SMO算法对SVM模型进行训练。以此方式,能够根据输入的数据集自动的选择最优的数据存储格式与算法;全局循环层次基于所述最优数据存储格式进行大量的更加高效的矩阵乘法运算计算kernel matrix;局部SMO求解器层次,使用GPU的寄存器通信技术与合并访存方法进行了更加细致的内存优化,充分利用硬件平台的计算资源。

    SVM模型的训练方法、装置、设备和计算机可读存储介质

    公开(公告)号:CN112686342B

    公开(公告)日:2021-06-18

    申请号:CN202110270550.5

    申请日:2021-03-12

    Applicant: 北京大学

    Abstract: 本公开的实施例提供了SVM模型的训练方法、装置、设备和计算机可读存储介质。所述方法包括获取数据集;加载所述数据集;通过自动调优框架在线预测所述数据集的最优存储格式并进行格式转换;执行SMO算法对SVM模型进行训练。以此方式,能够根据输入的数据集自动的选择最优的数据存储格式与算法;全局循环层次基于所述最优数据存储格式进行大量的更加高效的矩阵乘法运算计算kernel matrix;局部SMO求解器层次,使用GPU的寄存器通信技术与合并访存方法进行了更加细致的内存优化,充分利用硬件平台的计算资源。

Patent Agency Ranking