多模块辐射探测器的重复事件甄别和处理方法

    公开(公告)号:CN111624646B

    公开(公告)日:2021-07-30

    申请号:CN202010529546.1

    申请日:2020-06-11

    Abstract: 本发明公开了一种多模块辐射探测器的重复事件甄别和处理方法,所述方法包括:按时间先后排序辐射探测器探测到的各核粒子事件或辐射粒子事件;以时间阈值t为步长,依序取出时间差不超过t的各核粒子事件或辐射粒子事件,每一次依序取出的所述重复核粒子事件或重复辐射粒子事件为一簇;对于每一簇所述重复核粒子事件或重复辐射粒子事件,基于能量加权计算原始核粒子或原始辐射粒子的作用位置。所述方法实现了多模块辐射探测器内的重复事件的甄别,提高核粒子或辐射粒子如伽马粒子在辐射探测器内的位置分布信息的探测精度,从而提高最终的核粒子源或辐射粒子源的空间分布的重建精度。

    一种液氮和浴油双介质兼容型高真空调温系统及调温方法

    公开(公告)号:CN112295630A

    公开(公告)日:2021-02-02

    申请号:CN202011117356.5

    申请日:2020-10-19

    Abstract: 本申请提供一种液氮和浴油双介质兼容型高真空调温系统及调温方法,包括真空容器及其内部的热沉模块,真空容器外部设真空调节模块、液氮制冷模块、浴油调温模块及测量控制模块;热沉模块面向真空容器侧壁的表面设置液氮管路,另一侧设置浴油管路,液氮管路与液氮制冷模块连通,浴油管路与浴油调温模块连通;真空调节模块用于真空容器的真空度调节;液氮制冷模块通过热沉模块对真空容器提供液氮制冷环境;浴油调温模块通过热沉模块对真空容器提供浴油制冷环境。本申请的有益效果是:对热真空试验环境采用液氮制冷和浴油调温的双制冷模式,既具有浴油调温设备的性能特点,又可兼顾液氮低温设备的试验优势,试验过程中两种制冷方式可交替接力使用。

    真空环境中水蒸气捕集装置

    公开(公告)号:CN113694557B

    公开(公告)日:2022-09-02

    申请号:CN202111114251.9

    申请日:2021-09-23

    Abstract: 本发明公开了真空环境中水蒸气捕集装置,包括小车支架和捕集器本体,所述小车支架上安装有捕集装置本体,所述捕集装置本体的内部设置有以对水蒸气捕捉的换热部件,所述换热部件内部流通有液氮,所述捕集装置的顶部形成喇叭口搜集水蒸气,所述小车支架的底部设置有以对融水收集的集水器,所述集水器的底部连通有以排出融水的放液口。本发明中,冷凝管从上到下呈上疏下密的结构分布,这种排布设计的冷凝管能够防止水蒸气在进风面凝结过厚的冰,堵塞水蒸气进通道,保障捕集装置本体内部具有足够的水蒸气流通间隙,以使水蒸气在其中流动速度减慢,便于凝华在低温面上,提高水蒸气的凝结效率,同时可以增加不凝结气体的流动空间,便于抽真空。

    真空环境中水蒸气捕集装置

    公开(公告)号:CN113694557A

    公开(公告)日:2021-11-26

    申请号:CN202111114251.9

    申请日:2021-09-23

    Abstract: 本发明公开了真空环境中水蒸气捕集装置,包括小车支架和捕集器本体,所述小车支架上安装有捕集装置本体,所述捕集装置本体的内部设置有以对水蒸气捕捉的换热部件,所述换热部件内部流通有液氮,所述捕集装置的顶部形成喇叭口搜集水蒸气,所述小车支架的底部设置有以对融水收集的集水器,所述集水器的底部连通有以排出融水的放液口。本发明中,冷凝管从上到下呈上疏下密的结构分布,这种排布设计的冷凝管能够防止水蒸气在进风面凝结过厚的冰,堵塞水蒸气进通道,保障捕集装置本体内部具有足够的水蒸气流通间隙,以使水蒸气在其中流动速度减慢,便于凝华在低温面上,提高水蒸气的凝结效率,同时可以增加不凝结气体的流动空间,便于抽真空。

    便携式户外无水氧环境获得转运装置

    公开(公告)号:CN107539633A

    公开(公告)日:2018-01-05

    申请号:CN201610801718.X

    申请日:2016-09-05

    Abstract: 本发明公开了一种便携式户外无水氧环境获得转运装置,包括密封转运箱、真空抽气装置、充氮气装置和用于为两装置供电的供电电源,密封转运箱通过外围的真空抽气装置进行抽真空,然后通过充氮气装置充入高纯氮气,真空抽气装置的抽气管道上的充气微调阀与充氮气装置的氮气管道配对的自密封接头连接,两者切换三次,在密封转运箱内快速形成水、氧气含量均在1ppm以内的微正压高纯氮气环境。本发明的能够实现密封转运箱放入样品密封后可以快速连接真空抽气装置和充氮气装置进行真空置换高纯氮气,充氮气至微正压1500Pa下的强度和密封性要求,采用模块化设计降低了设备重量,提高便携性。

    浸液式氮气调温器
    6.
    发明公开

    公开(公告)号:CN106608376A

    公开(公告)日:2017-05-03

    申请号:CN201510690755.3

    申请日:2015-10-22

    Abstract: 本发明公开了一种浸液式氮气调温器,包括调温器容器和控制器,调温器容器底部和顶部中央分别设置氮气进气口和排气口,进气口与换热器组件一端连通,排气口与另一端连通,换热器组件设置内容器筒体内,筒体内填充有液氮,以与通入的氮气热交换,换热器周围还绕制有液氮盘管组件,以使液氮补液出口管路通过补液口将补充的液氮注入内容器筒体中,调温器容器底部设置液体排放口,顶部设置放空阀、压力表和液位计,温度传感器设置在氮气排气总管上,控制器根据温度传感器测量的氮气排出温度与目标温度间的差距大小,设定液位计目标控制高度;并通过调节补液调节阀阀门开度,反馈控制调温器容器内贮存的液氮液位高度达到目标控制高度,控制氮气出口温度达到目标温度。

    应用于空间环境试验的高精度动态微小摩擦力矩测试系统

    公开(公告)号:CN113776824A

    公开(公告)日:2021-12-10

    申请号:CN202111078811.X

    申请日:2021-09-15

    Abstract: 本发明公开了应用于空间环境试验的高精度动态微小摩擦力矩测试系统,包括真空容器与被测件,所述真空容器内表壁通过温控底板固定安装有驱动机构,所述驱动模块外侧配合有轴系机构,所述真空容器内表壁固定安装有穿墙插头以及用于数据转移的数据采集装置,所述真空容器内部还固定安装有传感器机构,所述真空容器外联有高低温系统与抽真空系统。本发明中,在被测产品进行空间环境试验时(真空度≤1×10‑3Pa;热沉温度:‑173℃~+150℃;被测件温度‑50℃~+80℃),实现了微小摩擦力矩的高精度动态测试,有效避免了由于抽真空变形和高低温变形引入的干扰误差,满足产品设计验证及适应空间环境能力、寿命等考核试验。

    基于物理集成的中子伽马探测器及中子伽马在线甄别方法

    公开(公告)号:CN111221030A

    公开(公告)日:2020-06-02

    申请号:CN201911217593.6

    申请日:2019-12-03

    Abstract: 本发明提出一种中子伽马在线甄别方法及相应的中子伽马探测器,包括:优化得到双能窗积分法的最优积分时间组合;对探测中子和伽马辐射所得电脉冲信号进行采集和处理,形成电脉冲信号,利用双能窗积分法和所述最优积分时间组合实现中子和伽马脉冲信号的在线实时甄别,其中,采用脉冲形状甄别因子Rpsd甄别中子与伽马信号。所述甄别方法及中子伽马探测器采用针对个体优化积分时间的双能窗方法进行中子和伽马的甄别,降低了探测器整体性能对晶体和器件个体差异的依赖,实现了中子和伽马在线甄别,大幅降低了中子探测的虚警率,而且本发明的中子伽马探测器采用单一传感器装置来探测中子和伽马,整个探测系统大幅简化,降低了仪器的体积和功耗。

    便携式户外无水氧环境获得转运装置

    公开(公告)号:CN107539633B

    公开(公告)日:2019-12-13

    申请号:CN201610801718.X

    申请日:2016-09-05

    Abstract: 本发明公开了一种便携式户外无水氧环境获得转运装置,包括密封转运箱、真空抽气装置、充氮气装置和用于为两装置供电的供电电源,密封转运箱通过外围的真空抽气装置进行抽真空,然后通过充氮气装置充入高纯氮气,真空抽气装置的抽气管道上的充气微调阀与充氮气装置的氮气管道配对的自密封接头连接,两者切换三次,在密封转运箱内快速形成水、氧气含量均在1ppm以内的微正压高纯氮气环境。本发明的能够实现密封转运箱放入样品密封后可以快速连接真空抽气装置和充氮气装置进行真空置换高纯氮气,充氮气至微正压1500Pa下的强度和密封性要求,采用模块化设计降低了设备重量,提高便携性。

    无人机自动化测试装置
    10.
    发明授权

    公开(公告)号:CN107416228B

    公开(公告)日:2019-12-13

    申请号:CN201710674385.3

    申请日:2017-08-09

    Abstract: 本发明公开了一种无人机自动化测试装置,主要由夹持工装、测试转台、测试平台、检测传感器、轴流风机、控制器、显示装置、二维码扫描枪、屏蔽罩组成;无人机通过螺钉固定在夹持工装上,夹持工装由螺栓固定在测试转台上,测试转台、轴流风机和检测传感器都安装在测试平台指定位置上,开启测试转台、轴流风机和检测传感器,形成测试环境,控制器将无人机上的信息与检测传感器上检测到的信息比对,在允许偏差值范围内的,标记为合格,超出的标记为不合格。本发明实现了数字化生产线要求,通过对无人机总测进行无纸化、自动化的方式,将原有人为检测项目采用传感器识别的方式进行检测,极大减少人为的干预性,使得测试结果更加准确,同时提高测试效率。

Patent Agency Ranking