一种基于卷积神经网络的行政违法案由预测方法及工具

    公开(公告)号:CN111552808A

    公开(公告)日:2020-08-18

    申请号:CN202010311136.X

    申请日:2020-04-20

    Abstract: 本发明涉及一种基于卷积神经网络的行政违法案由预测方法及工具,包括:获取第一预设数量的违法事实,并将所述违法事实转换为违法事实词向量,构建由违法事实词向量组成的训练数据集;利用卷积神经网络和全连接神经网络构建预测模型,并利用训练数据集中的违法事实词向量对所述预测模型进行训练,得到违法案由识别模型;其中,所述违法案由识别模型的输入为待识别的违法事实词向量,输出为违法案由预测结果。本发明提供的技术方案,在把文本信息交给深度神经网络模型进行处理之前,需要对文本信息进行处理,将文本信息转换为连续稠密的词向量,以便深度学习模型处理,相比现有技术,这种做法不需要选用特定的方法进行特征工程,特征表达能力更强。

Patent Agency Ranking