-
公开(公告)号:CN116029297A
公开(公告)日:2023-04-28
申请号:CN202310061847.X
申请日:2023-02-04
Applicant: 北京信息科技大学 , 复杂系统仿真总体重点实验室
IPC: G06F40/295 , G06V10/40 , G06V10/764 , G06V10/82 , G06N7/01 , G06N3/0464 , G06N3/045 , G06N3/048 , G06N3/08
Abstract: 本发明解决武器装备领域文本数据因其稀缺性,存在噪声大、句子短、质量差、不具备丰富的上下文语义等现象,利用多模态方法可有效提高实体识别的效果,包括以下步骤:由ResNet提取视觉特征,同时对图像进行分类;将分类标签在字典中的解释通过BERT得到向量信息,取到包含全部分类信息的[CLS];由BERT提取整个文本特征,将含有分类信息的[CLS]替换文本向量的[CLS]部分,然后进行自注意力得到关注实体的特征向量;将两种模态处理好的特征向量进行跨模态注意,通过互注意力模块对两种特征向量进行交互感知;最后通过CRF层提取出实体。在武器装备多模态数据集上进行实验,表明本发明优于单文本模态和主流多模态模型,可实现对武器装备领域实体的有效识别。
-
公开(公告)号:CN117034915B
公开(公告)日:2025-05-13
申请号:CN202310053706.3
申请日:2023-02-03
Applicant: 北京信息科技大学 , 复杂系统仿真总体重点实验室
IPC: G06F40/279 , G06F40/205 , G06F40/216
Abstract: 本发明涉及自然语言处理领域的文本处理方法,针对术语自动抽取任务,为了解决武器装备领域样本稀疏和长术语难以识别的问题,本文提出头尾指针和主动学习相结合的方法。在术语抽取模型方面,提出了融合五笔特征的头尾指针网络的术语抽取模型,使用BERT预训练语言模型得到词向量表示,利用头尾指针网络对长术语进行抽取;然后提出新的主动学习采样策略,在未标注样本上筛选高质量样本不断迭代训练模型,降低模型对数据规模的依赖。
-
公开(公告)号:CN117034915A
公开(公告)日:2023-11-10
申请号:CN202310053706.3
申请日:2023-02-03
Applicant: 北京信息科技大学 , 复杂系统仿真总体重点实验室
IPC: G06F40/279 , G06F40/205 , G06F40/216
Abstract: 本发明涉及自然语言处理领域的文本处理方法,针对术语自动抽取任务,为了解决武器装备领域样本稀疏和长术语难以识别的问题,本文提出头尾指针和主动学习相结合的方法。在术语抽取模型方面,提出了融合五笔特征的头尾指针网络的术语抽取模型,使用BERT预训练语言模型得到词向量表示,利用头尾指针网络对长术语进行抽取;然后提出新的主动学习采样策略,在未标注样本上筛选高质量样本不断迭代训练模型,降低模型对数据规模的依赖。
-
公开(公告)号:CN112380844A
公开(公告)日:2021-02-19
申请号:CN202011101527.5
申请日:2020-10-15
Applicant: 北京信息科技大学 , 复杂系统仿真总体重点实验室
IPC: G06F40/247 , G06F40/211
Abstract: 本申请公开了一种武器装备属性同义词扩展方法,包括:对爬取的文本进行预处理;对预处理后的文本进行分词;利用Glove模型和Word2Vec模型分别扩展同义词;对Glove模型扩展出的同义词和Word2Vec模型扩展出的同义词取交集,获得扩展结果。本申请实施例提供的武器装备属性同义词扩展方法,对文本分词后,分别采用Word2vec模型和Glove模型训练词向量以扩展同义词,将二者扩展的同义词结果取交集后得到更准确的同义词,扩展结果的查准率、召回率和F1值均较高,扩展效果好。
-
公开(公告)号:CN116384394A
公开(公告)日:2023-07-04
申请号:CN202310061983.9
申请日:2023-02-04
Applicant: 北京信息科技大学
IPC: G06F40/295 , G06F18/22 , G06F18/25 , G06V10/82 , G06N7/01 , G06N3/0464 , G06N3/0442 , G06N3/045
Abstract: 本发明设计自然语言处理领域的多模态实体识别方法,特别涉及针对模态之间信息交互不足,获得更准确的模型间信息相关性,包括以下步骤:将文本按字切分并转为数字标记输入BERT预训练模型,获取最后一层隐藏层向量;将相应的图像信息输入进RESNET模型获得图像隐藏层向量,同时使用目标检测工具识别图像中包含的目标,通过计算实体和图像中目标的相关性,对模态之间的相关性进行判断;通过对比学习的方式拉近文本向量和图像向量的嵌入分布距离,优化文本向量的表示意义;同时开发了一种动态门机制,更好的利用模态间相关性来增强对比学习的效果;在测试集上提取文本特征并进行测试。本发明可以获得表征含义更丰富的文本表示,能够更为有效的提升多模态实体识别的准确性。
-
公开(公告)号:CN115862020A
公开(公告)日:2023-03-28
申请号:CN202211526486.3
申请日:2022-12-01
Applicant: 北京信息科技大学
IPC: G06V30/142 , G06F16/24
Abstract: 本发明提供一种实时的全自动双轮毂字符识别系统,能够自动识别轮毂双侧内容并存储,对模糊和有污渍的数据具有较高的识别率。所述系统包括:轮毂装置、plc(可编程逻辑控制器)、图像采集设备、工控机。轮毂装置包括轮毂和车轨,轮毂为待识别物体位于车轨上方;plc配备传感器用于检测轮毂是否到位和控制系统拍照;图像采集设备由相机、光源和灯罩组成,用于获取轮毂双侧的数据;工控机安装GPU和应用程序;应用程序包括通信模块、识别模块、展示和存储等模块。所述工控机连接plc和相机设备,程序接受到plc拍照信号后启动相机拍照,对采集的图片进行识别,分析识别结果用于展示和存储。本发明适用于工业自动化及目标检测技术领域。
-
公开(公告)号:CN115759011A
公开(公告)日:2023-03-07
申请号:CN202211519223.X
申请日:2022-12-01
Applicant: 北京信息科技大学
IPC: G06F40/166 , G06F16/22 , G06V30/148 , G06V30/412 , G06F16/26 , G06V30/19 , G06F16/28
Abstract: 本发明涉及一种端到端的通用型表格检测系统,用于帮助工作人员快速提取文件中的表格信息,提高工作效率。所述系统包括:表格定位、表格单元格检测、表格结构化识别、表格文字识别、结构化数据输出、数据存储。所述表格定位主要通过深度学习算法定位文件中表格的位置;所述表格单元格检测旨在检测图像中的表格单元格和单元格位置信息;所述表格结构识别旨在检测单元格间的行列关系;所述表格文字识别旨在使用OCR技术识别单元格内的文字信息;所述结构化输出旨在将上述几个步骤中识别到的数据输出成一个key‑value形式的可编辑二维表;所述数据存储旨在将二维表中的数据存入数据库;本发明适用于智能化办公或需要大量表格处理的领域。
-
公开(公告)号:CN112507717A
公开(公告)日:2021-03-16
申请号:CN202011482958.0
申请日:2020-12-16
Applicant: 北京信息科技大学
IPC: G06F40/295 , G16H15/00 , G06N3/04
Abstract: 本申请公开了一种融合实体关键字特征的医疗领域实体分类方法,包括:文本向量化操作;特征提取;序列标注。本申请实施例提供的融合实体关键字特征的医疗领域实体分类方法,采用TF‑IDF辅助构建关键字表,将这些关键字作为特征输入模型,采用BERT模型进行文本向量化操作生成字向量,将字向量输入BILSTM‑CNN混合模型学习特征,再经过CRF层进行序列标注,能够实现医疗领域实体分类,且能够大大提高医疗领域实体分类的准确率、召回率和F1值。
-
公开(公告)号:CN110704610A
公开(公告)日:2020-01-17
申请号:CN201910404983.8
申请日:2019-05-15
Applicant: 北京信息科技大学
IPC: G06F16/35 , G06F40/205
Abstract: 本发明涉及一种体育新闻战报主题分类方法,包括:步骤1)对语料进行预处理;步骤2)对语料进行人工标注;步骤3)对语料进行交叉验证;步骤4)选取类别特征对句子主题进行分类。步骤2)包括:首先制定标注规则,完全按照类别定义进行标注,并对语料标注者进行集中沟通,并确认是否完全理解类别信息,然后将语料平均分给多个人进行标注。本发明提出的方法对句子主题分类十分有效,准确率高,具有较好的召回率和F值,可用于为领域模板库构建提供支持,可以很好地满足实际应用的需要。
-
公开(公告)号:CN109740123A
公开(公告)日:2019-05-10
申请号:CN201811566675.7
申请日:2018-12-21
Applicant: 北京信息科技大学
IPC: G06F17/22 , G06F16/2452
Abstract: 本发明涉及一种使用实时数据生成体育赛事战报的方法,使用基于Attention的序列模型TransFormer将关键事件转化为战报句,所述方法包括:使用抽取模型从实时数据中抽取关键事件,然后用生成式模型将抽取出来的每一个结构化的关键事件翻译成战报风格的语言,最后将这些句子按照时间线拼接成一篇战报。本发明提供的使用实时数据生成体育赛事战报的方法,使用抽取模型从实时数据中抽取关键事件,然后用生成式模型将抽取出来的每一个结构化的关键事件翻译成战报风格的语言,最后将这些句子按照时间线拼接成一篇战报,从结构化的实时数据里抽取关键事件,实时数据结构规范,内容精确,因此抽取效果很好,克服了现有技术存在的缺陷,可以很好地满足实际应用的需要。
-
-
-
-
-
-
-
-
-