-
公开(公告)号:CN111160167A
公开(公告)日:2020-05-15
申请号:CN201911312525.8
申请日:2019-12-18
Applicant: 北京信息科技大学
Abstract: 本发明涉及一种基于S变换深度卷积神经网络的主轴故障分类识别方法,其步骤:将主轴振动信号作为振动样本信号,并将该振动样本信号分成多段预先设定长度的信号;对每段信号分别进行S变换、小波变换和短时FFT变换,得到时频谱图图像;将生成的时频谱图尺寸进行压缩,然后随机分为训练样本和测试样本,构建CNN神经网络训练集和测试集;将训练样本输入到CNN中,对CNN网络参数进行学习训练构建深度卷积神经网络模型,并将测试样本输入深度卷积神经网络中测试其分类性能;判断CNN模型是否合格,合格则得到理想CNN模型参数,否则返回重新构建CNN模型;将实际采集到的待测振动信号的S变换后的时频特征输入训练好的CNN模型,得到刻画数据类型的故障分类结果。