边缘计算架构下的差分私有多源无线信号指纹融合室内定位方法

    公开(公告)号:CN111988845B

    公开(公告)日:2022-02-22

    申请号:CN202010915760.0

    申请日:2020-09-03

    Abstract: 一种边缘计算架构下的差分私有多源无线信号指纹融合室内定位方法,其为:(1)边缘设备将自己拥有的信息强度RSS数据经添加拉普拉斯噪声后随机发送到附近边缘节点;(2)边缘节点接收到RSS数据后,将相同位置收集到的WiFi和蓝牙的RSS数据进行聚合,并对其进行统一标定后发送给边缘服务器;(3)边缘服务器将接收到的噪声标记和未标记样本整合在一起,并利用图拉普拉斯流行约束对WiFi和BLE的RSS数据进行差分隐私保护的特征融合,并将所有经过隐私保护处理后的数据集发送到云服务器;(4)云服务器拟合学习参数,进行满足差分私有的机器学习模型训练,生成安全可信的室内定位模型。本发明不仅能够提供可证明的隐私保护,而且可以保证较高的定位精度和较少的资源消耗。

    面向边缘计算的联邦学习室内定位隐私保护方法

    公开(公告)号:CN111866869B

    公开(公告)日:2023-06-23

    申请号:CN202010645474.7

    申请日:2020-07-07

    Abstract: 本发明提出了一种面向边缘计算的联邦学习室内定位隐私保护方法,该方法基于联邦学习和差分隐私保护技术,在边缘计算环境下进行室内定位模型的可信联邦训练,训练过程中各参与用户不共享训练数据,只通过共享定位模型参数进行室内定位模型的分布式训练和可信聚合,同时,通过端云协同的迭代方式更新模型参数,不断优化室内定位模型,实现多用户定位模型训练的隐私保护和协同获益。实验结果表明,与传统集中式的模型训练方法和基于联邦学习的模型训练方法相比,本发明不仅能提供可证明的隐私保护,而且在增加极小计算开销的情况下保证了模型的定位效果。

    边缘计算架构下的差分私有多源无线信号指纹融合室内定位方法

    公开(公告)号:CN111988845A

    公开(公告)日:2020-11-24

    申请号:CN202010915760.0

    申请日:2020-09-03

    Abstract: 一种边缘计算架构下的差分私有多源无线信号指纹融合室内定位方法,其为:(1)边缘设备将自己拥有的信息强度RSS数据经添加拉普拉斯噪声后随机发送到附近边缘节点;(2)边缘节点接收到RSS数据后,将相同位置收集到的WiFi和蓝牙的RSS数据进行聚合,并对其进行统一标定后发送给边缘服务器;(3)边缘服务器将接收到的噪声标记和未标记样本整合在一起,并利用图拉普拉斯流行约束对WiFi和BLE的RSS数据进行差分隐私保护的特征融合,并将所有经过隐私保护处理后的数据集发送到云服务器;(4)云服务器拟合学习参数,进行满足差分私有的机器学习模型训练,生成安全可信的室内定位模型。本发明不仅能够提供可证明的隐私保护,而且可以保证较高的定位精度和较少的资源消耗。

    面向边缘计算的联邦学习室内定位隐私保护方法

    公开(公告)号:CN111866869A

    公开(公告)日:2020-10-30

    申请号:CN202010645474.7

    申请日:2020-07-07

    Abstract: 本发明提出了一种面向边缘计算的联邦学习室内定位隐私保护方法,该方法基于联邦学习和差分隐私保护技术,在边缘计算环境下进行室内定位模型的可信联邦训练,训练过程中各参与用户不共享训练数据,只通过共享定位模型参数进行室内定位模型的分布式训练和可信聚合,同时,通过端云协同的迭代方式更新模型参数,不断优化室内定位模型,实现多用户定位模型训练的隐私保护和协同获益。实验结果表明,与传统集中式的模型训练方法和基于联邦学习的模型训练方法相比,本发明不仅能提供可证明的隐私保护,而且在增加极小计算开销的情况下保证了模型的定位效果。

Patent Agency Ranking