-
公开(公告)号:CN113673242A
公开(公告)日:2021-11-19
申请号:CN202110960433.1
申请日:2021-08-20
IPC: G06F40/289 , G06F40/211 , G06K9/62 , G06N3/08
Abstract: 本发明公开了一种基于K邻近结点算法和对比学习的文本分类方法,该方法在训练阶段使用对比学习拉进类内距离,拉远类间距离,并且结合交叉熵损失,辅助对比学习进行联合训练,在推理过程中,通过联合训练好的模型,结合最邻近结点算法,进行联合预测,计算待推断文本的分类;本发明不仅能够在文本分类的准确率上取得比目前业内使用的文本分类方式更高的结果,而且在模型的鲁棒性上也取得了极大的提升。
-
公开(公告)号:CN113673242B
公开(公告)日:2024-10-15
申请号:CN202110960433.1
申请日:2021-08-20
IPC: G06F40/289 , G06F40/211 , G06F18/2415 , G06F18/23 , G06N3/084 , G06N3/0895
Abstract: 本发明公开了一种基于K邻近结点算法和对比学习的文本分类方法,该方法在训练阶段使用对比学习拉进类内距离,拉远类间距离,并且结合交叉熵损失,辅助对比学习进行联合训练,在推理过程中,通过联合训练好的模型,结合最邻近结点算法,进行联合预测,计算待推断文本的分类;本发明不仅能够在文本分类的准确率上取得比目前业内使用的文本分类方式更高的结果,而且在模型的鲁棒性上也取得了极大的提升。
-