-
公开(公告)号:CN117011316B
公开(公告)日:2024-02-06
申请号:CN202311278665.4
申请日:2023-10-07
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06T7/11 , G06T7/00 , G06T5/70 , G06T3/4053 , G06T7/62
Abstract: 一种基于CT图像的大豆茎秆内部结构辨识方法和系统,该方法包括:步骤一,将大豆盆栽放入植物CT采集设备,利用micro‑CT设备对大豆植株进行从上而下的扫描,得到采集的大豆茎秆CT图像数据;步骤二,对采集的CT图像数据集进行数据增强,引入扩散模型对数据进行超分辨处理,获取更丰富的组织细节信息;步骤三,对CT图像进行分割,得到大豆茎秆内部的组织结构的分割图;步骤四,根据分割结果进行体积重建,获得网格化数据,获得分割区域的体积、表面积等参数。本发明利用CT技术对大豆全生命周期的茎秆内部组织进行捕获,避免了传统破坏式捕获大豆植株内部信息,能有效提升大豆植株茎秆内部结
-
公开(公告)号:CN117011718B
公开(公告)日:2024-02-02
申请号:CN202311288015.8
申请日:2023-10-08
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06V20/10 , G06V10/764 , G06V10/42 , G06V10/44 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/0895 , G06N3/094
Abstract: 据中。一种基于多元损失融合的植物叶片细粒度识别方法和系统,首先将植物叶片图像以九宫格的方式进行随机掩码完成图像增强,并与原图成对地输入到特征提取网络模型中,得到特征向量;将特征向量输入分类网络层中,并进行品种识别;将特征向量输入到对抗网络层中,进行二分类识别;将掩码图的特征向量输入到自编码网络模块中,进行图像复原的自监督学习;三项任务的损失函数共同监督并指导网络的训练;在自监督任务中掩码图像通过学习复原本身位置使特征提取网络关注到叶片局部特征,而原图在品(56)对比文件王泽宇 等.基于多模态特征的无监督领域自适应多级对抗语义分割网络《.通信学报》.2022,第43卷(第12期),157-171.齐爱玲 等.基于中层细微特征提取与多尺度特征融合细粒度图像识别《.计算机应用》.2023,第43卷(第8期),2556-2563.Gang Li 等.Self-supervised VisualRepresentation Learning for Fine-GrainedShip Detection《.2021 IEEE 4thInternational Conference on InformationSystems and Computer Aided Education(ICISCAE)》.2021,67-71.
-
公开(公告)号:CN117011316A
公开(公告)日:2023-11-07
申请号:CN202311278665.4
申请日:2023-10-07
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
Abstract: 一种基于CT图像的大豆茎秆内部结构辨识方法和系统,该方法包括:步骤一,将大豆盆栽放入植物CT采集设备,利用micro‑CT设备对大豆植株进行从上而下的扫描,得到采集的大豆茎秆CT图像数据;步骤二,对采集的CT图像数据集进行数据增强,引入扩散模型对数据进行超分辨处理,获取更丰富的组织细节信息;步骤三,对CT图像进行分割,得到大豆茎秆内部的组织结构的分割图;步骤四,根据分割结果进行体积重建,获得网格化数据,获得分割区域的体积、表面积等参数。本发明利用CT技术对大豆全生命周期的茎秆内部组织进行捕获,避免了传统破坏式捕获大豆植株内部信息,能有效提升大豆植株茎秆内部结构辨识的细粒度,实现精准精细的表型识别。
-
公开(公告)号:CN117079060A
公开(公告)日:2023-11-17
申请号:CN202311325300.2
申请日:2023-10-13
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06V10/764 , G06V10/774 , G06V10/25 , G06V20/40 , G06V10/82 , G06N3/0442 , G06N3/0464 , G06N3/045
Abstract: 一种基于光合信号的叶片智能分类方法和系统,其方法包含:叶片光合信号提取、叶片光合信号分类。叶片光合信号提取通过叶片检测模型提取出视频中的叶片,使用分割算法对提取出的叶片进行分割,从而分割出叶片区块,然后以叶片区块内的像素均值记为当前帧的光合信号值,视频的多帧连续光合信号值即组成此叶片的光合信号。叶片光合信号分类使用神经网络对采集到的叶片光合信号进行特征提取训练,来实现叶片的分类。本发明提出一种基于植物叶片的光合信号,确定其提取方法,并针对植物叶片的光合信号变化,采用深度学习训练的方式,提取出植物叶片与其光合信号变化的相关性,从而大大提高叶片分类的精度。
-
公开(公告)号:CN119206098B
公开(公告)日:2025-02-14
申请号:CN202411723332.2
申请日:2024-11-28
Applicant: 之江实验室
IPC: G06T17/00 , G06N3/0464 , G06N3/0455 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种基于CLIP的性质到微结构逆向生成方法,包括训练和推理阶段,具体为:利用图表示对三维微结构进行表示,训练变分自编码器对图表示进行编码和解码;利用训练好的变分自编码器提取图表示的潜在特征,利用CLIP对性质提取性质特征,计算潜在特征和性质特征之间的损失,根据损失利用优化器进行训练,得到训练好的模型参数。输入目标性质到训练好的CLIP模型中得到编码后的性质特征,然后将性质特征输入到训练好的变分自编码器的解码器中解码得到图表示,最后将图表示转化成三维结构建模文件。本发明实现了性质到微结构的逆向生成,并且对微结构的对称性连通性等做判断,使得生成的微结构的质量得到保证。
-
公开(公告)号:CN119206098A
公开(公告)日:2024-12-27
申请号:CN202411723332.2
申请日:2024-11-28
Applicant: 之江实验室
IPC: G06T17/00 , G06N3/0464 , G06N3/0455 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种基于CLIP的性质到微结构逆向生成方法,包括训练和推理阶段,具体为:利用图表示对三维微结构进行表示,训练变分自编码器对图表示进行编码和解码;利用训练好的变分自编码器提取图表示的潜在特征,利用CLIP对性质提取性质特征,计算潜在特征和性质特征之间的损失,根据损失利用优化器进行训练,得到训练好的模型参数。输入目标性质到训练好的CLIP模型中得到编码后的性质特征,然后将性质特征输入到训练好的变分自编码器的解码器中解码得到图表示,最后将图表示转化成三维结构建模文件。本发明实现了性质到微结构的逆向生成,并且对微结构的对称性连通性等做判断,使得生成的微结构的质量得到保证。
-
公开(公告)号:CN117079060B
公开(公告)日:2024-03-12
申请号:CN202311325300.2
申请日:2023-10-13
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06V10/764 , G06V10/774 , G06V10/25 , G06V20/40 , G06V10/82 , G06N3/0442 , G06N3/0464 , G06N3/045
Abstract: 一种基于光合信号的叶片智能分类方法和系统,其方法包含:叶片光合信号提取、叶片光合信号分类。叶片光合信号提取通过叶片检测模型提取出视频中的叶片,使用分割算法对提取出的叶片进行分割,从而分割出叶片区块,然后以叶片区块内的像素均值记为当前帧的光合信号值,视频的多帧连续光合信号值即组成此叶片的光合信号。叶片光合信号分类使用神经网络对采集到的叶片光合信号进行特征提取训练,来实现叶片的分类。本发明提出一种基于植物叶片的光合信号,确定其提取方法,并针对植物叶片的光合信号变化,采用深度学习训练的方式,提取出植物叶片与其光合信号变化的相关性,从而大大提高叶片分类的精度。
-
公开(公告)号:CN117011718A
公开(公告)日:2023-11-07
申请号:CN202311288015.8
申请日:2023-10-08
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06V20/10 , G06V10/764 , G06V10/42 , G06V10/44 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/0895 , G06N3/094
Abstract: 一种基于多元损失融合的植物叶片细粒度识别方法和系统,首先将植物叶片图像以九宫格的方式进行随机掩码完成图像增强,并与原图成对地输入到特征提取网络模型中,得到特征向量;将特征向量输入分类网络层中,并进行品种识别;将特征向量输入到对抗网络层中,进行二分类识别;将掩码图的特征向量输入到自编码网络模块中,进行图像复原的自监督学习;三项任务的损失函数共同监督并指导网络的训练;在自监督任务中掩码图像通过学习复原本身位置使特征提取网络关注到叶片局部特征,而原图在品种识别任务中使特征提取网络关注叶片原有形状信息和全局特征;采用对抗损失函数进行原图与增强图的辨别,预防分类模型过拟合到增强数据中。
-
-
-
-
-
-
-