-
公开(公告)号:CN113505040B
公开(公告)日:2023-09-08
申请号:CN202110811149.8
申请日:2021-07-19
Applicant: 中国科学院计算技术研究所
IPC: G06F11/30 , G06F18/214 , H04L41/0677 , H04L41/14
Abstract: 本发明提供一种用于网络功能过载诊断模型的训练方法,包括以下步骤:步骤100:获得静态变量环境下的不同动态变量环境下的延迟和硬件指标;步骤200:根据所述延迟对所获得的硬件指标进行分类;步骤300:对每种动态变量环境下的所述硬件指标根据其与过载诊断的关联度进行筛选;步骤400:对同一静态变量环境下的不同动态变量环境下筛选出的硬件指标进行合并,形成供训练用的数据集;步骤500:使用所述数据集训练所述过载诊断模型。相对于已有的网络功能过载诊断方法,本方法具有诊断准确率高、数据测量简单和可以进行根因分析的优点。
-
公开(公告)号:CN113505040A
公开(公告)日:2021-10-15
申请号:CN202110811149.8
申请日:2021-07-19
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提供一种用于网络功能过载诊断模型的训练方法,包括以下步骤:步骤100:获得静态变量环境下的不同动态变量环境下的延迟和硬件指标;步骤200:根据所述延迟对所获得的硬件指标进行分类;步骤300:对每种动态变量环境下的所述硬件指标根据其与过载诊断的关联度进行筛选;步骤400:对同一静态变量环境下的不同动态变量环境下筛选出的硬件指标进行合并,形成供训练用的数据集;步骤500:使用所述数据集训练所述过载诊断模型。相对于已有的网络功能过载诊断方法,本方法具有诊断准确率高、数据测量简单和可以进行根因分析的优点。
-