-
公开(公告)号:CN119785070A
公开(公告)日:2025-04-08
申请号:CN202411690030.X
申请日:2024-11-25
Applicant: 中国科学院计算技术研究所
IPC: G06V10/764 , G06V10/774 , G06N3/084 , G06V10/82
Abstract: 本发明提供了一种基于AUC优化的锐度感知最小化的图像分类训练方法,本发明的技术方案通过对锐度感知最小化技术中所采用的扰动进行调整,利用预设的加扰超参数对关于模型参数的第一梯度进行映射,确定模型参数对应的扰动,从而避免实例级形式I‑AUC与锐度感知最小化技术的直接的适配所导致的复杂的极小极大‑极小极大优化问题,有效降低模型训练的时间,减少能源的消耗;同时,借助锐度感知最小化技术,有效提升了模型的泛化能力。
-
公开(公告)号:CN117975124A
公开(公告)日:2024-05-03
申请号:CN202410082638.8
申请日:2024-01-19
Applicant: 中国科学院计算技术研究所
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06N3/047 , G06N3/08
Abstract: 本发明提供一种医疗图像分类模型训练方法,包括:S1、从目标诊疗场景中采样多个诊疗错误的医疗图像以构建经验代价集,其中,所述经验代价集包括多个正常医疗图像和多个异常医疗图像,且每个正常医疗图像和每个异常医疗图像均对应一个误分类代价,所述误分类代价为其对应的正常医疗图像或异常医疗图像诊疗错误所造成的经济损失;S2、从所述目标诊疗场景中采样多个医疗图像以构建训练集,所述训练集中包括多个正常医疗图像和多个异常医疗图像,且所述每个正常医疗图像的标签为无病,所述每个异常医疗图像的标签为有病;S3、根据所述经验代价集确定分类阈值,并基于分类阈值采用所述训练集对医疗图像分类模型进行多轮迭代训练直至收敛。
-
公开(公告)号:CN117422903A
公开(公告)日:2024-01-19
申请号:CN202311286397.0
申请日:2023-10-07
Applicant: 中国科学院计算技术研究所
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06N3/084
Abstract: 本发明提供一种用于图像分类模型的不平衡学习方法,包括:获取各类别样本量不平衡的图像分类的训练集;获取基于神经网络构建的图像分类模型;以初始化后的模型为基础,重复按照以下方式对模型进行多次迭代训练,得到经训练的模型:从练集采样一个批次的样本图像,并输入当前的模型;利用当前的模型确定输入的样本图像的分类结果,分类结果包括对应图像在各个类别的得分;根据当前采样的次数确定当前的训练阶段为前期还是后期,在前期和后期分别对预设的损失函数中的得分调整项和重加权项进行不同配置,得到按训练阶段配置的损失函数;利用按训练阶段配置的损失函数,根据当前批次的样本图像的分类结果和对应的标签计算损失,更新当前模型的参数。
-
公开(公告)号:CN117392431A
公开(公告)日:2024-01-12
申请号:CN202311181083.4
申请日:2023-09-13
Applicant: 中国科学院计算技术研究所
IPC: G06V10/764 , G06V10/40 , G06V10/774 , G06V10/778
Abstract: 本发明提供了一种生成扰动样本的方法,所述方法包括:获取原始图像样本和标签,并在原始图像样本中添加初始噪声得到初始扰动图像样本;将初始扰动图像样本输入图像分类模型,输出初始扰动图像样本在各个类别下的预测得分,基于预测得分对各个类别进行排序;若排序结果满足预设排序目标,则确定初始扰动图像样本为最优扰动图像样本,初始噪声为最优噪声;若排序结果不满足预设排序目标,则基于标签和预测得分利用目标优化函数对初始噪声进行优化更新,并生成下一轮待识别的扰动图像样本,直至排序结果满足预设排序目标,确定生成此次排序结果的待识别的扰动图像样本为最优的扰动图像样本,生成待识别的扰动图像样本中的噪声为最优噪声。
-
公开(公告)号:CN117333737A
公开(公告)日:2024-01-02
申请号:CN202311294438.0
申请日:2023-10-08
Applicant: 中国科学院计算技术研究所
IPC: G06V10/774 , G06V10/764 , G06V10/40 , G06V10/82 , G06N3/094 , G06N3/04
Abstract: 本发明提供了一种基于可验证鲁棒AUC的端到端对抗训练方法,包括:获取具有长尾分布的图像分类的训练集,其包括多个原始样本和标签;利用训练集,按照以下方式对图像分类模型进行多次迭代训练,得到经训练的图像分类模型:基于标签,针对每个类别,将训练集中属于该类别的每个原始样本作为一个正样本与每个负样本组成一个该类别的原始样本对;针对样本对集合的每个类别的每个原始样本对,构造一个与之对应的该类别的扰动样本对,扰动样本对中的扰动正样本和扰动负样本是对应的原始样本对中的正样本和负样本分别加上本次训练时根据预设的正态分布随机采样得到的同一个扰动矩阵得到;将所有的扰动正样本和扰动负样本输入图像分类模型基于AUC训练模型。
-
公开(公告)号:CN116721311A
公开(公告)日:2023-09-08
申请号:CN202310760402.0
申请日:2023-06-26
Applicant: 中国科学院计算技术研究所
IPC: G06V10/774 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/048 , G06N3/084
Abstract: 本发明提供一种图像分类模型的训练方法及基于此的图像分类方法,其中,图像分类模型的训练方法包括:S1、获取封闭域训练数据,其包括多个封闭域样本图像和指示封闭域样本图像所属已知类别的标签;S2、利用步骤S1获得的封闭域训练数据将模型训练至收敛,训练时,获取总损失,其包括封闭域分类损失和AUROC目标损失,所述AUROC目标损失被配置为用于指导模型训练以期望在相应封闭域样本图像的特征输入分类器后被正确分类的情况下,被正确分类的封闭域样本图像的特征在超未知类上的置信度小于开放域样本特征在超未知类上的置信度。本发明可约束图像分类模型的性能满足开放域识别任务中的图像分类子任务的优化目标。
-
公开(公告)号:CN112270571B
公开(公告)日:2023-06-27
申请号:CN202011209043.2
申请日:2020-11-03
Applicant: 中国科学院计算技术研究所
IPC: G06Q30/0242 , G06Q10/04 , G06N3/0464 , G06N3/08
Abstract: 本发明提供一种用于冷启动广告点击率预估模型的元模型训练方法,包括:S1、构建初始元模型并初始化元模型的参数;S2、获取未被点击过的未知广告组成的数据集,其中,每一个未知广告对应一个任务;S3、使用步骤S2中的数据集对元模型进行多轮训练直至收敛。本发明将每个已知任务的权重作为可学习的参数,并将加权后的任务分布和原始经验分布之间的卡方散度作为约束条件,形成了一种对于任务难度自适应的元学习损失函数。一方面,通过在训练过程中动态平衡各个任务的权重,从原本被忽略的难任务中挖掘到更多的有效知识,从而提升了模型的整体性能。另一方面,通过将任务权重和模型其他参数的学习问题建模为最大‑最小优化问题,利用GDmax算法对其进行了有效的求解,可以快速的达到收敛。
-
公开(公告)号:CN112149004A
公开(公告)日:2020-12-29
申请号:CN202011187518.2
申请日:2020-10-30
Applicant: 中国科学院计算技术研究所
IPC: G06F16/9536 , G06F16/9535 , G06F16/36 , G06F16/33
Abstract: 本发明提供一种基于知识图谱的个性化推荐方法,包括:S1、将用户集中的用户与物品集中的物品的历史交互数据和原有知识图谱结合到协同知识图谱中,在所述协同知识图谱中将用户与其交互物品在知识图谱中对应的实体使用有向边进行连接;S2、用四元数向量表示协同知识图谱中的每一个实体和关系;S3、采用注意力机制将实体的四元数嵌入沿着协同知识图谱的路径进行偏好传播与聚合;S4、基于完成偏好传播与聚合后的协同知识图谱,构建偏好分数预测函数计算每个用户与不同物品的偏好分数;S5、采用损失函数联合优化协同知识图谱的嵌入和偏好分数预测函数;S6、采用优化后的偏好分数预测函数预测用户对新物品的偏好分数,得到针对用户的新物品推荐列表。
-
公开(公告)号:CN102883179B
公开(公告)日:2015-05-27
申请号:CN201110194206.9
申请日:2011-07-12
Applicant: 中国科学院计算技术研究所
IPC: H04N17/00
Abstract: 本发明提供一种视频质量客观评价方法,包括:10)在相同时间点切分源视频和待测视频,得到视频片段;20)分别提取来自源视频和待测视频的视频片段中视频帧的视频块,利用时空纹理特征计算对应视频块的相似度,其中所述时空纹理特征体现了像素之间的像素差异;30)根据对应视频块的相似度计算来自待测视频的视频帧的质量分数;40)根据来自待测视频的视频帧的质量分数计算来自待测视频的视频片段的质量值,进而计算待测视频的质量分数。上述方法所获得的质量分数更加符合人的主观感知。
-
公开(公告)号:CN102883180B
公开(公告)日:2014-08-06
申请号:CN201110195375.4
申请日:2011-07-12
Applicant: 中国科学院计算技术研究所
IPC: H04N17/00
Abstract: 本发明提供一种视频质量评价方法,包括:10)将每个待测视频作为图上的一个节点来构建图,根据视频总数量确定需要添加到图上的边的数量,其中观测者成对比较视频的比较结果对应于图的一个边;20)根据所述数量将比较结果映射到图上,将该图作为霍奇分解的输入;30)根据霍奇分解获得每段视频的质量得分。本发明所提供的上述方法在没有降低视频质量评价的准确度的前提下,操作简单、省时省力;而且适合用于网络众包。
-
-
-
-
-
-
-
-
-