-
公开(公告)号:CN113780569A
公开(公告)日:2021-12-10
申请号:CN202110813797.7
申请日:2021-07-19
Applicant: 中国科学院计算技术研究所
IPC: G06N20/00
Abstract: 本发明提出一种基于相似话题的流行度预测方法和系统,基于KSC算法对历史话题的流行度序列聚类,得到话题级别的演化模式,按照待预测话题的观测窗口和预测窗口大小,对各历史话题的流行度序列进行切分得到训练数据的输入和输出,使用各类别下的历史话题的训练数据分别训练全连接网络作为预测模型,充分利用了与待预测话题在流行度演化模式上相似的历史话题的数据,降低了预测误差。基于DTW算法对待预测话题进行分类,使用待预测话题所属类别的模型进行流行度预测,保证预测及时,增强预测的时效性。
-
公开(公告)号:CN112667872B
公开(公告)日:2023-04-07
申请号:CN202011290564.5
申请日:2020-11-17
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
IPC: G06F16/951 , G06F16/9532 , G06F16/25 , G06F9/445 , G16H50/80
Abstract: 本发明公开了新冠肺炎疫情数据的实时采集方法,包括以下步骤:一、建立配置文件,将多个信源网站内实时反映疫情数据的网页的基本信息预置在配置文件中,包括多个字段的名称、各字段的存储路径,各字段的被采纳次数;二、采集网页数据,通过配置文件中待采集字段的存储路径从多个信源网站采集待采集字段当前的数值;三、数据对齐处理,以待采集字段的数据对齐结果为待采集字段的采集数据;步骤四、更新配置文件,将各信源网站中待采集字段的数值与待采集字段的采集数据相同的信源网站中待采集字段的被采纳次数加1。本发明的方法从多个信源网站的实时数据中获取可信度最高的数据作为采集数据,提高了疫情实时数据的准确性。
-
公开(公告)号:CN112667872A
公开(公告)日:2021-04-16
申请号:CN202011290564.5
申请日:2020-11-17
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
IPC: G06F16/951 , G06F16/9532 , G06F16/25 , G06F9/445 , G16H50/80
Abstract: 本发明公开了新冠肺炎疫情数据的实时采集方法,包括以下步骤:一、建立配置文件,将多个信源网站内实时反映疫情数据的网页的基本信息预置在配置文件中,包括多个字段的名称、各字段的存储路径,各字段的被采纳次数;二、采集网页数据,通过配置文件中待采集字段的存储路径从多个信源网站采集待采集字段当前的数值;三、数据对齐处理,以待采集字段的数据对齐结果为待采集字段的采集数据;步骤四、更新配置文件,将各信源网站中待采集字段的数值与待采集字段的采集数据相同的信源网站中待采集字段的被采纳次数加1。本发明的方法从多个信源网站的实时数据中获取可信度最高的数据作为采集数据,提高了疫情实时数据的准确性。
-
-