-
公开(公告)号:CN116883775A
公开(公告)日:2023-10-13
申请号:CN202310714418.8
申请日:2023-06-15
Applicant: 中国科学院计算技术研究所
IPC: G06V10/774 , G06V10/82 , G06V10/764 , G06V10/74 , G06N3/0475 , G06N3/0464 , G06N3/08
Abstract: 本发明提出一种开放环境的模型溯源方法,包括:以已知图像和对应的已知图像生成模型类别构建为闭集样本;以卷积神经网络构建增强模型,基于该闭集样本以该增强模型生成对应未知图像生成模型类别的开集样本;以该闭集样本和该开集样本训练任务模型,通过完成训练的任务模型预测给定图像的图像生成模型。本发明还提出一种开放环境的模型溯源系统,以及一种用于开放环境下模型溯源的数据处理装置。
-
公开(公告)号:CN111553916A
公开(公告)日:2020-08-18
申请号:CN202010388676.8
申请日:2020-05-09
Applicant: 杭州中科睿鉴科技有限公司 , 中国科学院计算技术研究所数字经济产业研究院
Abstract: 本发明涉及一种基于多种特征和卷积神经网络的图像篡改区域检测方法。本发明的目的是提供一种基于多种特征和卷积神经网络的图像篡改区域检测方法。本发明的技术方案是:一种基于多种特征和卷积神经网络的图像篡改区域检测方法,其特征在于:获取待检测图像:对待检测图像进行基于双重压缩痕迹特征的篡改检测;将待检测图像输入具有RGB流和噪声流双流输入的双流卷积篡改检测网络模型进行检测;对待检测图像进行基于图像匹配的复制-粘帖检测;输出检测结果。本发明适用于数字图像取证领域。
-
公开(公告)号:CN113627503B
公开(公告)日:2023-10-24
申请号:CN202110872711.8
申请日:2021-07-30
Applicant: 中国科学院计算技术研究所
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种生成图像溯源模型训练方法,包括以下步骤:将生成图像输入至生成器以获取对应该生成图像的一指纹;将该指纹添加至随机选取的一真实图像上,得到一带指纹图像;将该带指纹图像分别输入至鉴别器和辅助分类器进行训练。
-
-
-