基于大语言模型的旋转位置编码的编码方法及装置

    公开(公告)号:CN119622156A

    公开(公告)日:2025-03-14

    申请号:CN202411792329.6

    申请日:2024-12-06

    Abstract: 本发明提供了一种基于大语言模型的旋转位置编码的编码方法,包括:通过预定的迭代计算公式对三角函数进行迭代计算,通过上一轮三角函数值得到本轮三角函数值;获取至少一个输入向量,将所述输入向量和所述本轮三角函数值进行逐元素乘加运算,得到旋转位置编码的向量编码。本发明还提供一种基于大语言模型的旋转位置编码的编码装置、存储介质及电子设备。借此,本发明实现顾计算精度、计算效率与硬件开销的平衡,并显著降低片上存储需求,从而为大语言模型的加速提供有力支持。

    扩散模型加速器及其全网络差分数据流计算方法

    公开(公告)号:CN118446267A

    公开(公告)日:2024-08-06

    申请号:CN202410618369.2

    申请日:2024-05-17

    Abstract: 本发明提出一种扩散模型加速器,包含:片外内存,存储有上一时间步的原值;片上缓存,包含:权重缓存模块,与外片内存耦接,用于提取权重值进行缓存;输入特征缓存模块,用于读取输入差分激活值进行缓存;输出特征缓存模块,用于读取输出差分激活值进行缓存;处理引擎,包含:运算器阵列,用于读取缓存的该权重值与该输入差分激活值进行卷积乘法运算,生成该输出差分激活值;特殊处理模块,与该片外内存及该输出特征缓存模块耦接,用于从该片外内存获取该原值的符号位值;且利用该符号位值在该输出差分激活值上进行函数激活运算,生成增量输出值。其具有良好的加速效果,同时具有较高的能量效率和面积效率。

    脉冲神经网络转换方法及相关转换芯片

    公开(公告)号:CN110059800B

    公开(公告)日:2021-09-14

    申请号:CN201910079637.7

    申请日:2019-01-26

    Abstract: 本发明公开了一种人工神经网络转换为脉冲神经网络的脉冲神经网络转换方法及相关转换芯片,该脉冲神经网络转换方法包括:根据人工神经网络的待转换层和转换激活函数,得到待转换人工神经网络,该转换激活函数的结果与该人工神经网络的输入数据正相关;训练该待转换人工神经网络,得到训练后待转换人工神经网络;以及根据该训练后待转换人工神经网络和时钟神经元,得到脉冲神经网络。

    计数方法及装置
    5.
    发明授权

    公开(公告)号:CN107818343B

    公开(公告)日:2021-01-08

    申请号:CN201711037201.9

    申请日:2017-10-30

    Abstract: 本公开提供了一种计数方法,包括:对一深度神经网络进行预训练;利用标记图像对预训练后的所述深度神经网络进行重训练,得到二分类的目标检测神经网络;以及利用所述二分类的目标检测神经网络对待计数的图像中包含的计数目标物体进行计数。本公开还提供了一种计数装置。本公开计数方法及装置应用范围广,可针对任意计数对象进行计数,节省人力并且提供了更高的通用性。

    用于分形智能处理器的分形可重配指令集

    公开(公告)号:CN111831331A

    公开(公告)日:2020-10-27

    申请号:CN202010688961.1

    申请日:2020-07-16

    Abstract: 本公开提供一种用于分形智能处理器的分形可重配指令集,该分形可重配指令集将本地指令或计算原语映射为用于分形运算的分形指令,该本地指令作用于向量数据或标量数据。该分形可重配指令集包括间接指令域。对应的,分形智能处理器的控制系统包括分解模块、降级模块及记录模块;分解模块用于对分形可重配指令集进行串行分解;降级模块用于对串行分解后的串行分解子指令进行降级;分解模块还用于对降级后的串行分解子指令进行并行分解。记录模块,用于在每一次串行分解之前,替换所间接指令域的值,以实现对分形可重配指令集的动态控制。该分形可重配指令抽象层次高,表达灵活性强,结合控制系统的硬件架构支持,可解决计算过程中的失效问题。

    神经网络运算装置及应用其进行运算的方法

    公开(公告)号:CN108170640B

    公开(公告)日:2020-06-09

    申请号:CN201711452014.7

    申请日:2017-10-17

    Abstract: 本公开提供一种神经网络运算装置和方法,其中装置包括:运算部分,用于完成所述卷积运算,包含多个运算单元组,多个所述运算单元组呈X行Y列的阵列式分布,运算单元组间以S形方向和/或逆S形方向传递数据,其中X和Y分别为正整数;缓存,用于向所述运算单元组传送数据以及接收运算单元组运算后的数据。通过采用S形和逆S形在运算单元中完成数据的传递,从而能够有效加速神经网络运算的同时,降低了权值的反复读取和部分和反复存取所带来的访存功耗。

    一种神经网络的处理方法、系统

    公开(公告)号:CN105930902B

    公开(公告)日:2018-08-10

    申请号:CN201610240416.X

    申请日:2016-04-18

    CPC classification number: G06F15/78 G06N3/063

    Abstract: 本发明适用于计算机技术领域,提供了一种神经网络处理系统的处理方法、系统,该神经网络的处理系统包括由多个核心处理模块组成的多核心处理模块、片上存储介质、片内地址索引模块以及ALU模块,多核心处理模块用于执行神经网络运算中的向量乘加操作,ALU模块用于从所述多核心处理模块或片上存储介质获取输入数据执行多核心处理模块无法完成的非线性运算,其中多个核心处理模块共享片上存储介质以及ALU模块,或者多个核心处理模块具有独立的片上存储介质以及ALU模块。本发明在神经网络处理系统中引入多核设计,从而提升神经网络处理系统的运算速度,使得神经网络处理系统性能更高,更加高效。

Patent Agency Ranking