-
公开(公告)号:CN117710850A
公开(公告)日:2024-03-15
申请号:CN202311575656.1
申请日:2023-11-23
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提出一种基于时空分解与对齐的端到端动作视频生成方法,包括:构建视频生成模型,以一组姿势关键点、参考前景及参考背景作为该视频生成模型的模型输入,以目标动作视频作为该视频生成模型的模型输出;将该目标动作视频的原始视频空间分解为多组时空子空间,通过动作流引导使各组时空子空间的子空间特征对齐;将对齐后的各组时空子空间恢复为该原始视频空间,并得到该目标动作视频。本发明还提出一种基于时空分解与对齐的端到端动作视频生成系统,以及一种用于实现基于时空分解与对齐的端到端动作视频生成的数据处理装置。
-
公开(公告)号:CN117690005A
公开(公告)日:2024-03-12
申请号:CN202311576310.3
申请日:2023-11-23
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提出一种面向生成式模型图像编辑的图像篡改检测方法,包括:对真实图像进行语义分割,获取该真实图像的至少一个对象;基于对该对象的编辑目标,使用生成式模型生成编辑图像;以该真实图像和该编辑图像为训练集对检测模型进行训练;通过该检测模型对目标图像进行图像篡改检测。本发明还提出一种面向生成式模型图像编辑的图像篡改检测系统,以及一种用于实现面向生成式模型图像编辑的图像篡改检测的数据处理装置。
-
公开(公告)号:CN117095228A
公开(公告)日:2023-11-21
申请号:CN202311117995.5
申请日:2023-08-31
Applicant: 中国科学院计算技术研究所
IPC: G06V10/764 , G06V10/82 , G06V10/44 , G06V10/26 , G06N3/0455 , G06N3/0464 , G06N3/08
Abstract: 本发明提出一种基于语义无关特征学习的图像篡改检测方法和装置,包括通过预训练的基准语义特征编码器提取待检测图像的语义特征,使用对比学习框架约束局部区域篡改痕迹特征与基准语义特征的相似性,进而直接限制篡改痕迹特征中的语义相关性;利用篡改区域边界监督来引导模型挖掘篡改区域边界附近真实区域与篡改区域特征的不一致性,设计特征转换结构来实现辅助任务和主任务的统一,以确保作为辅助任务的篡改区域边界预测任务能够为篡改区域预测任务提供增益。
-
-